WA世界模型的技术原理 - WA世界模型概念源于20世纪40年代苏格兰心理学家肯尼思·克雷克提出的"心智模型",通过模拟物理规律理解世界并做出决策[9][11][12] - 2018年DeepMind发表《World Models》论文,提出通过自动编码器压缩现实场景数据,利用神经网络推演未来可能性,再通过控制器执行动作的"造梦"训练模式[17][18][19] - 世界模型采用类似"训狗"的奖励惩罚机制,通过设定物理参数和规则框架让AI在试错中进化[24][26] - 2022年后借助ChatGPT等大模型的序列建模能力,世界模型从2D升级到3D仿真,可推演多因素叠加的复杂场景[26][28] - 核心目标是让AI具备人类式的物理时空理解能力,通过因果逻辑预演行动后果[29] WA世界模型在自动驾驶领域的应用 - 华为和蔚来是明确采用WA世界模型技术路线的代表企业[6] - 蔚来技术可实现分析前3秒行车数据,0.1秒内推演120秒模拟路况,生成216种场景可能性[32] - 华为ADS 4系统分为云端WE(World Engine)世界引擎和车端WA(World Action Model)世界行为模型,合称WEWA[37][39][40][41] - 系统内置多专家模块,如路口预测专家和拥堵跟车专家,根据不同场景调用专用算力资源[56][57][58] - 车端算力需求较低,通过注意力热图实现局部算力聚焦,降低延迟提高反应速度[54][55][59] WA世界模型与传统端到端及VLA的对比 - 相比传统端到端模型,WA世界模型增加预判环节,运行速度更快[33][34] - 解决端到端黑箱问题的手段不同:VLA通过图像转文本实现可视化修改,WA通过三维物理规则反向演算配合注意力热图回溯问题根源[44][45][48] - 数据训练优势明显,云端世界引擎可虚拟生成极端事故场景数据,突破真实数据稀缺限制[50][51][52] - 与VLA技术路线差异:WA依赖"肌肉记忆"经验式反应,车端系统更精简;VLA接近人类逻辑思考,擅长处理突发危险场景和复杂长尾决策[62][63][64][65] - 硬件需求侧重点不同:VLA对车端芯片算力要求高,WA更依赖网络速度和芯片带宽[68] 行业技术路线发展态势 - 当前辅助驾驶技术处于分水岭阶段,WA与VLA路线各有拥趸[69][70] - 长期可能走向技术融合或出现新架构,实现优势互补[71] - 技术发展最终目标为推动L3、L4级自动驾驶落地[72][73]
华为、蔚来重金押注WA世界模型!这才是未来辅助驾驶的发展方向?