英伟达自动驾驶算法工程师面试
公司招聘流程 - 公司招聘流程包括笔试和五轮技术面试 [3] - 笔试包含三道算法题,涉及图搜索、模拟和动态规划,难度为LeetCode中等水平 [4] - 每轮面试均包含1-2道算法题,涉及链表操作、动态规划、堆排序和DFS等 [3][6][8][11][14] 技术面试内容 - 面试问题涵盖项目经验、规划控制算法和深度学习等多个技术领域 [5][8][11][12] - 规划控制相关问题包括MPC优化问题构造、Hybrid A*算法流程和运动学约束算法改进等 [5][8][12] - 深度学习相关问题涉及目标检测、关键点检测和图像处理等 [8][11] 算法与数据结构 - 笔试算法题通过率分别为90%、0%和70%,主要考察动态规划和异或操作 [4] - 面试算法题包括链表合并、棋盘路径规划和TopK问题等,要求实现多种解法和优化 [6][8][11][14] - 算法实现要求涵盖递归、迭代、记忆化搜索和STL容器应用等 [8][11][14] 职位与团队 - 公司职位划分非常细致,专注于特定技术方向如规划控制和自动泊车 [3][7][12] - 团队合作紧密,工作中会参考学术论文并开展组内组间协作 [9][13] - 招聘流程包含英文技术面试,由技术主管考察项目经验和算法基础 [14] 行业技术趋势 - 自动驾驶技术栈呈现趋同态势,技术方案向统一化方向发展 [22] - 行业出现One Model、VLM和VLA等技术趋势,技术壁垒不断提高 [22] - 技术发展方向涵盖端到端自动驾驶、大模型和多模态3D目标检测等多个领域 [27]