Workflow
龙湖如何用Agent重塑地产与物业的运营方式?

核心观点 - Agent智能体技术在地产和物业行业实现深度应用,通过多场景数字员工提升决策效率、风险控制和运营自动化水平,重塑行业运营逻辑 [3][5][6] - 公司自2014年起投入超100亿元进行数字化转型,搭建近300个业务系统,为Agent落地奠定数据基础 [7] - 自研数字员工平台结合500多个垂直算法模型,实现多智能体协作,准确率稳定在80%左右,年挽回损失达数千万级 [6][15][23] 业务痛点与Agent解决方案 - 决策时效性问题:区域公司调价审批依赖人工分析需1-2周,错过市场窗口 [7] - 复杂度与风险问题:传统流程无法快速模拟调价对货值、利润率等多维度影响,导致凭经验"盲批" [7] - Agent价值:融合财务、市场、运营数据提供综合建议,持续学习优化,接近"认知复制" [8] 关键落地场景与成效 定调价智能Agent - 自动整合财务数据、历史销售数据、竞品价格和市场风向,模拟不同调价方案影响 [10] - 审批时间从1-2周缩短至1-2天,避免单项目数百万货值损失 [10][11] - 首个重点Agent针对高风险高影响场景,直接给出建议通过/不通过结论 [10] 停车场异常抬杆稽核 - 年处理2亿次抬杆记录,人工审核比例从100%降至17%,稽核效率提升83% [15] - 多模态大模型自动判别合理放行与异常逃费,年避免数千万损失 [15] - 已在400多个项目落地,不合规放行减少近90% [15] 合同审核Agent - 自动识别免租期、押金、违约条款等风险点,提示条款不符合企业规定 [20] - 针对商业地产招商合同复杂条款,避免后续运营风险 [17][20] - 替代人工逐条审核,提升审核效率与准确性 [17] 培训考试Agent - 基于SOP和制度规范自动生成题库、考试及阅卷分析 [16] - 新员工入职或转岗可快速完成学习考核,保证考试一致性和公平性 [16] - 新规章制度颁布后几天内生成多岗位题库,加速全员适应 [16] 技术实施与组织管理 技术门槛与解决方案 - 最大挑战为企业知识准备度,需清晰SOP和规则库支持Agent执行 [21] - 数据质量依赖统一数字化体系,提供统一口径高标准数据 [21] - 通过结构化方式输入制度、规范、合同模板等规则,训练Agent精准识别风险 [22] 多智能体协作 - 新员工入职流程涉及审批Agent、IT部门自动开通账号、人事Agent收集信息等多Agent协作 [24][25] - 通过接口打通实现跨部门自动化,形成虚拟员工团队 [25][26] - 异常时需业务负责人介入,大部分步骤无需人工干预 [25] 自研技术路线 - 大模型采用开源与付费服务结合,AI智能体平台以自研为主 [27] - 自研数字员工平台灵活适应复杂业务场景,避免通用模型个性化不足问题 [27] - 正在进行不动产行业大模型训练,强化业务专属性和精准性 [27] 组织推进策略 - 实行AI产品经理与业务专家"双角色团队"机制,按6:4分担责任 [28] - 通过培训、AI大赛、内部体验活动减少一线员工抵触心理 [29] - 为高管、中层、一线员工分层培训,设立AI战略委员会推动"人人会用AI" [30] 外部输出与未来规划 - 2023年起向外部客户提供Agent解决方案,面临确定性期望与模型不确定性冲突 [31] - 客户数字化基础参差不齐,需先补齐高质量结构化数据等基础条件 [32] - 未来1-2年深化企业内部管理、商业运营、智慧服务领域应用 [33] - 重点开发经营数据分析Agent、客服Agent和跨部门协作Agent,实现端到端任务自动化 [34] 常见实施误区 - 忽视数据和场景基础,将Agent视为万能工具 [35] - 缺乏耐心,期望一上线即100%准确 [36] - 忽视组织与规则建设,将Agent定位为替代而非增强工具 [37]