Workflow
自动驾驶超视距VLA如何实现?小鹏NavigScene另辟蹊径!

文章核心观点 - 小鹏汽车团队提出NavigScene系统 旨在解决自动驾驶领域局部感知与全局导航信息脱节的关键瓶颈 通过导航引导的自然语言数据集和三种创新方法实现超越视觉范围的推理能力 显著提升自动驾驶系统的感知、预测和规划性能 [3][4][9] 技术方案 - NavigScene构建导航引导的自然语言数据集 在自动驾驶系统内部仿真类人化驾驶环境 弥合局部传感器数据与全局导航信息之间的差距 [4][5] - 开发导航引导推理范式 通过将导航上下文融入提示方法增强视觉语言模型的推理能力 [5] - 采用导航引导偏好优化方法 扩展直接偏好优化技术 通过建立导航相关信息摘要的偏好关系改进视觉语言模型响应 [5] - 创建导航引导视觉-语言-动作模型(NVLA) 通过特征融合将导航引导和视觉语言模型与传统端到端驾驶模型集成 [5] 应用价值 - 系统显著提升自动驾驶在基于局部视觉信息的问答、感知、预测和规划方面的性能 为构建更可靠的自动驾驶系统奠定基础 [4][9] - 使自动驾驶系统具备"高瞻远瞩"的导航思维 突破当前系统只能"看清"周围却难以"预见"远方道路与决策的限制 [3] - 研究成果以论文形式发布 标题为《NavigScene: Bridging Local Perception and Global Navigation for Beyond-Visual-Range Autonomous Driving》 [6] 内容安排 - 直播将涵盖自动驾驶研究问题简介 导航数据集的视觉生成和文本生成 基于导航数据集的多模态大模型后训练 以及视觉-语言-动作模型等核心内容 [10] - 技术分享由NavigScene论文第一作者Qucheng Peng主讲 深度解析团队如何开创性弥合局部感知与全局导航的鸿沟 [3]