前字节技术负责人创业,要做企业级Coding Agent平台,已获数千万元融资 | 36氪专访
创业创业(US:VEMLY) 36氪·2025-12-30 00:13

AI Coding赛道发展现状与市场格局 - 2024年Vibe Coding赛道发展迅猛,明星公司Cursor的年经常性收入从2023年的100万美元暴涨至2024年11月的6500万美元,估值在四个月内翻了超6倍 [2] - 市场变化体现在两个维度:一是C端产品获得高估值且收入猛涨,证明了真实市场需求;二是市场格局重构,越来越多厂商从C端转向B端,企业级需求开始爆发 [5] - C端AI产品(如Cursor、Replit、ChatGPT)的迅速普及,提升了企业研发群体对AI的接受度和付费意愿,远超预期 [13] 公司创业背景与团队构成 - 公司创始人杨萍原为字节跳动技术研发负责人,自2021年起带领百人团队探索AI在软件领域的应用,其产品曾服务字节内部数万研发人员,帮助公司节省亿级别研发预算 [2] - 杨萍于2024年8月离开字节,并于2025年7月与两位联创正式成立新公司“词元无限” [6][15] - 公司近期完成数千万元天使轮融资,投资方为某软件产业CVC [7] - 团队吸纳了资深人才,CTO王伟为清华姚班校友,曾任国内知名具身机器人公司与大模型创业公司的技术合伙人;商业化负责人李莹拥有十余年AI产业落地经验,曾在大模型To B领域主导完成数亿元规模的项目落地 [7] 公司产品:InfCode平台 - 公司核心产品InfCode于12月初上线第一个版本,形态为插件+企业级AI Coding平台 [10] - 产品帮助企业完成代码治理、补全、审查、任务规划等工作,能力相当于一个中阶研发工程师 [10] - 产品通过两层机制解决企业适配问题:第一层是标准化对接,通过内置MCP Server连接器快速集成飞书、企业OA等常见办公系统;第二层是个性化适配,针对企业独特的微服务架构和遗留系统提供开放接口 [10] - 在全球权威智能体评测基准SWE-Bench Verified上,InfCode以79.4%的得分刷新了世界最佳纪录,超过公开排行榜上GPT-5、Claude等顶尖模型65%左右的成绩 [12] 目标市场与核心价值主张 - 公司专注于面向B端企业的AI Coding Agent服务,聚焦于严肃级的企业级编程场景,解决规模化、复杂的软件交付全流程问题 [6][18] - 与主打轻量化软件交付的C端Vibe Coding产品不同,公司致力于解决企业复杂的遗留系统、技术栈和严苛业务规范下的问题,例如金融、医药等关键行业的合规要求 [7][17][20] - 企业级场景与Vibe Coding在很大程度上相悖,因为前者要求结果确定、服务稳定,并需在特定业务上下文和规范下完成 [21] 产品技术实现与效果 - 为解决企业级场景中模型上下文窗口有限的挑战,Agent设计了两层机制:内功方面进行上下文优化(如动态压缩、加载卸载机制);外功方面通过MCP等开放协议连接企业研发过程中的各类信息 [23] - 在实际POC验证中,合作客户的研发效率提升了近40%,AI生成代码的可用率达到88%以上,质量达到中级程序员水平 [11] - 在一个金融上市公司案例中,实施分为两步:第一步提供标准化产品并关注上下文工程;第二步解决信息对接问题,最终帮助客户提升了将近40%的人效 [24][26] - 公司衡量价值的方式是以结果为导向,直接对比人力投入(如研发周期人天),而非中间过程的AI准确率 [12][27] 商业模式与收费 - 商业模式正探索以结果为导向的方式,即RaaS [13] - 收费模式针对工具类产品收取License授权和Agent订阅费;针对平台类产品,除标准费用外也在考虑分润模式 [30] 市场竞争与公司战略 - 尽管阿里、字节、百度等大厂及Cursor等垂类厂商也在布局,但公司认为头部企业的布局未必意味着市场终局,许多大厂的根本动机在于作为云服务与模型业务的入口策略,而非产品本身 [41] - 当前端到端的AI编程尚未形成明确市场标准与行业共识,公司认为这是一个关键的时间窗口,必须加速确立标准并深度打通企业级研发流程 [42] - 公司认为AI Coding领域的最终形态将从单体工具进化到人机协作模式,并最终演变为程序员群体本身,改变生产力主体和组织 [43] - 公司发展将分三个阶段迭代:第一阶段以工具形态轻量化嵌入企业;第二阶段变为工具+平台,作为连接器;第三阶段目标是构建Agent集成平台 [39][40][33] 行业机遇与挑战 - 基础模型发展迅速,2025年基础模型厂商在Agent能力上建设不遗余力,新模型带来的业务价值立竿见影 [13] - 传统SaaS更多是标准化模块固化流程,而AI Coding的核心价值是通过动态能力组合解决企业复杂问题,推动业务从流程执行走向智能决策与生成 [46] - AI Coding与以前AI模式的最大区别在于,它本质上是在创造一种由AI驱动的数字劳动力,使得规模化扩展、个性化方案与低实施成本的不可能三角获得了新的可能性 [47] - 当前To B的AI Coding产品尚未形成市场标准和供需平衡,但存在巨大商业价值,市场存在红利 [51]