赵何娟独家对话李飞飞:“我信仰的是人类,不是AI”
新浪财经·2025-12-22 05:27

行业趋势与展望 - 空间智能(世界模型)预计将在未来两年内迎来应用级爆发 [1][5][21] - AI发展正从“语言生成”迈向“世界生成”,让机器在连续三维世界中实现“看见-生成-互动” [4][5] - 世界模型正成为产业竞逐的新高地,Google DeepMind等巨头已组建专门团队并发布相关路线 [5] - 生成式AI通过降低复杂任务的门槛,将开启许多意想不到的新市场和应用 [23][24] 公司进展与产品 - World Labs发布了首款商用“世界模型”Marble,可从图片或文字提示生成可持续存在、可自由导航且几何一致的3D世界 [2][4] - Marble模型可导出为Gaussian Splat等格式,支持在网页与VR设备中体验与二次创作,突出了“更大、更清晰、更一致”的特点 [4] - World Labs自2024年获巨额融资以来,始终以开发大型世界模型(LWM)为愿景 [6] - 公司认为3D世界生成技术可应用于数字创意、游戏开发、影视、设计、建筑、VR/AR及机器人仿真等多个领域 [23] 技术路径与瓶颈 - 实现通用人工智能(AGI)需要多把“钥匙”,空间智能是其中关键一环,没有它则不算真正的AGI [25] - 当前发展面临数据瓶颈,这是螺旋形上升过程中的新关键点,与算法同等重要 [31][32][33] - 业界存在一种偏见,即更看重算法而非数据,但所有真正做AI的人都明白数据至少与算法平等重要 [34][35] - 机器人领域的数据尤其难以采集,因为缺乏大规模商业化应用场景,这限制了其发展 [43][47] 竞争格局与市场机会 - AI是一项横向技术,为应用层提供了大量机会,大公司无法完全覆盖,小公司有机会在垂直应用领域做到极致 [54][55] - 显性资源(如数据、算力、人才)的整合优势并非绝对,创造力、时机和执行同样关键,历史上从未有过只有大公司能赢的时代 [53][54] - 有能力开发基础模型的公司(通常需要顶尖人才和特定结构)与专注于应用开发的公司将有不同的市场路径 [55][57] 应用场景分析 - 自动驾驶可被视为一个简化版的世界模型,但其场景相对简单(二维移动、避免碰撞),远复杂于未来需要在三维世界中执行多种操作(如家务)的机器人 [40][41] - 工业机器人因场景单一、数据相对丰富而已有应用,其智能化进程可能更快;日常用机器人的商业化则还有较长的路要走 [44][45][47] - 围绕机器人数据(如模拟数据)的创业公司存在商业机会,但成功取决于市场大小和满足客户需求的能力 [47] 发展理念与价值观 - AI的本质是工具,人类必须掌握选择权和主动权,不能自我放弃 [1][4][70] - 发展的同时必须关注安全与向善,在只追求发展和只强调伦理两个极端之间需要理性平衡 [57][58] - 在AI时代,教育体系急需革命,应利用AI赋能教育者和学生,将节约出的时间和精力用于培养AI无法替代的认知与能力 [65][66][67] - 面对AI可能带来的虚假信息等负面影响,公众教育、制度政策以及人的创造性应对至关重要 [77][78][79]