技术路线演进 - 智能驾驶技术从基于规则的模块化方案,演进到端到端方案,再到当前的VLA和世界模型 [2][5][8] - 模块化方案易于量产但时延长、信息损耗大,端到端方案通过数据驱动学习驾驶,但存在无法收敛的极端情况难题 [2][5] - VLA模型旨在让系统像人类一样主动理解和推理物理世界,理想汽车和小鹏汽车分别提出了包含语言转译环节和取消语言环节的不同技术路径 [8][9] 主要参与者技术选择 - 理想汽车选择VLA技术路线,其"VLA司机大模型"将视觉成像转译为语言再执行动作 [8] - 小鹏汽车选择更激进的第二代VLA路线,取消语言转译环节,将多模态物理信号直接输出为控制信号,以降低信息损耗并实现自监督学习 [9] - 华为和蔚来选择世界模型路线,华为的WAWE架构同样省略语言环节,蔚来则在其世界模型中力推加入强化学习模型 [9][12] 技术挑战与争议 - VLA路线面临多模态特征对齐困难、训练数据提取难、大语言模型幻觉以及芯片存储带宽不足四大落地难点 [11] - 反对观点认为VLA以语言为中心,语言模型的带宽不足以应对现实世界的复杂性和连续性,信息转换过程存在损失 [11] - 端到端方案被指出对物理世界缺乏真正的理解能力,难以处理从未学习过的特别复杂情况 [5] 公司战略与组织调整 - 小鹏汽车在2025年10月进行自动驾驶部门人事调整,由侧重基础模型研究的刘先明接替侧重产品功能实现的李力耘,标志着技术路线彻底转向基础模型 [13][14] - 理想汽车在2024年9月将自动驾驶研发部门重组为11个二级部门,重点是将研发资源向VLA倾斜,以推动团队向AI组织演进 [14] - 蔚来在相近时间也进行了自动驾驶团队的组织架构调整,多位负责人离职,以利于全力冲刺世界模型2.0版本的开发与交付 [15] 行业竞争格局变化 - 汽车公司自研自动驾驶技术的趋势发生变化,部分公司转向选择外部供应商作为核心解决方案提供方,例如长城汽车与元戎启行合作,奇瑞汽车与卓驭科技、文远知行合作 [18] - 解决方案供应商如文远知行推出的端到端方案获得高度评价,被认为具备可伸缩的算力适配能力和更强的车型兼容性,能消解自研车企的领先优势 [19][21] - 自研面临资金效率挑战,小鹏汽车为建成3万卡规模智算集群,仅训练费用投入就高达20亿元人民币,理想汽车也在云端搭建了13EFLOPS算力以支持研发 [21] 行业发展阶段与未来展望 - 当前所有技术路线的产品落地仍属于L2框架,但VLA和世界模型被认为是通向L4级自动驾驶的积极因素 [22] - 行业认为从2024年第四季度到2025年上半年是辅助驾驶技术落地的关键时期,领先身位的公司可能随时发生变化 [1] - 小鹏汽车认为其第二代VLA技术可以为具身智能的落地铺路,智能驾驶的真正竞争被认为刚刚开始 [22]
从技术路线到人员更迭,为什么智能驾驶又开始了“新造词”? | 电厂