模型发布与核心特点 - Meta发布Code World Model(CWM),参数量为32B,支持最长131k token上下文,采用开放权重策略[1] - 模型核心目标是将"世界模型"思想引入代码生成与推理领域,使模型不仅能生成代码,还能模拟执行过程、推理程序状态并自我修复Bug[1][2] - 训练数据规模庞大:预训练阶段使用约8T tokens(代码占比30%),中期训练引入5T tokens世界建模数据,后训练阶段SFT使用100B tokens、RL使用172B tokens[3][4] 技术实现与数据构建 - 采用局部+全局交替机制和长序列稳定化技术处理超长上下文[3] - 世界模型能力依赖两类数据:Python执行轨迹(序列化中间栈帧与变量状态)和Agent环境交互轨迹(从10.2万张镜像和3.15万个仓库收集300万条轨迹)[6][8][9] - 后训练阶段引入工程优化:SFT阶段使用"推理token"区分直答与推理,RL阶段改用
把“会跑的代码世界”装进AI,Meta重磅开源首个代码世界模型:让AI像程序员一样思考