强化学习之父” 理查德·萨顿:人类数据红利逼近极限,AI正进入以持续学习为核心的“经验时代
证券时报网·2025-09-11 03:26
人工智能发展趋势 - 人类数据红利正逼近极限 人工智能正在进入以持续学习为核心的经验时代 潜力将远超以往 [1] - 经验指的是观察 行动和奖励三种信号在智能体与世界之间来回传递 知识来自于经验 智能程度取决于预测并控制自身输入信号的程度 经验是一切智能的核心与基础 [2] - 强化学习带领进入新的经验时代 但要释放全部潜力还需要持续学习和元学习两项尚不成熟的技术 [2] 人工智能发展路径 - 需要新的数据源 由智能体与世界直接交互中生成 这是人类和其他动物的学习方式 也是AlphaGo自我博弈和AlphaProof在国际数学奥林匹克斩获银牌的路径 [1] - 人工智能的恐惧被夸大 目标不同的智能体可以通过去中心化的协作实现双赢 [2] - 人工智能和人类繁荣将来自于去中心化协作 协作是世间一切美好事物的源泉 必须寻求协作 支持协作并致力将协作制度化 [2] 人工智能历史定位 - 人工智能的替代将是不可避免的 人类是催化剂和助产士 更是开启宇宙第四大时代设计时代的先驱 [2] - 宇宙历史分为四个时代:粒子时代 恒星时代 复制者时代和设计时代 [2] - 人工智能是宇宙演化的必然下一步 应以勇气 自豪和冒险精神来迎接它 [3]