Workflow
Vision-Language Model
icon
搜索文档
自动驾驶一周论文精选!端到端、VLA、感知、决策等~
自动驾驶之心· 2025-08-20 03:28
自动驾驶技术研究进展 核心观点 - 近期自动驾驶领域涌现大量创新研究成果 涉及端到端驾驶 感知 VLM Benchmark等多个方向 [2] - 自动驾驶之心知识星球已构建产业 学术 求职 问答的闭环生态 提供40+技术路线梳理和数十位行业专家资源 [4] 端到端自动驾驶 - 中科大GMF-Drive提出门控Mamba融合与空间感知BEV表征的端到端方案 [8] - 清华与比亚迪合作开发ME³-BEV框架 结合Mamba架构增强BEV感知的深度强化学习 [8] - 博世联合清华等提出IRL-VLA方案 通过免仿真器强化学习训练VLA驾驶模型 获CVPR亚军 [8] 感知与VLM技术 - VISTA模型实现基于视觉语言模型的驾驶员注意力时空预测及自然语言解释 [7] - 清华团队开发VLM-3D框架 实现开放世界端到端视觉语言模型驱动的3D感知 [10] - 慕尼黑工业大学Dream-to-Recon方案利用扩散-深度蒸馏实现单目图像三维重建 [10] 决策规控领域 - 安全关键型自动驾驶BEV感知技术获系统性综述 [10] - 清华CBDES MoE架构首创模块级动态路由 实现功能解耦专家混合 [10] - 加拿大温莎大学RMT-PPAD模型通过Transformer实现实时多任务全景感知 [10] 仿真测试与数据集 - 北大ReconDreamer-RL框架结合扩散场景重建增强强化学习 [11] - STRIDE-QA数据集提供城市驾驶场景时空推理的大规模视觉问答资源 [12]
基于开源Qwen2.5-VL实现自动驾驶VLM微调
自动驾驶之心· 2025-08-08 16:04
自动驾驶技术框架与模型 - LLaMA Factory是一款开源低代码大模型微调框架,集成业界广泛使用的微调技术,GitHub星标超过4万,成为开源社区最受欢迎的微调框架之一 [3] - 项目基于Qwen2.5-VL-7B-Instruct模型,通过自然语言对话触发自动驾驶辅助功能,并以特定格式返回结果 [3] - Qwen2.5-VL是视觉-语言系列旗舰模型,支持视觉识别、物体定位、文档解析和长视频理解,旗舰型号Qwen2.5-VL-72B性能与GPT-4o和Claude 3.5 Sonnet相当 [4] 数据集与训练 - 使用CoVLA数据集,包含10,000个真实驾驶场景和超过80小时视频,通过自动数据处理生成精确驾驶轨迹和自然语言描述 [5] - 实际训练仅使用400张图片和对应QA问答对,数据量较小 [7] - 微调过程通过Web UI配置参数,训练日志显示loss进度,微调后模型保存在指定路径 [15] 技术应用与效果 - 微调后的模型在回答自动驾驶相关问题时,比原生Qwen2.5-VL-7B-Instruct模型更具参考价值,原始模型存在答非所问的情况 [19] - 测试显示模型能识别天气、道路类型等场景信息,并给出置信度(如多雨天气置信度0.978,宽阔道路置信度0.659) [10] - 模型可评估自动驾驶风险,如识别交通信号灯、其他车辆(置信度0.656)和行人(概率43.064%) [10] 社区与资源 - 自动驾驶之心知识星球拥有近4000人社区,300+自动驾驶公司与科研机构参与,覆盖30+技术栈 [22] - 提供端到端自动驾驶、大模型、BEV感知、轨迹预测等多方向专业课程 [23]
上交&卡尔动力FastDrive!结构化标签实现端到端大模型更快更强~
自动驾驶之心· 2025-06-23 11:34
端到端自动驾驶研究进展 - 将类人推理能力融入端到端自动驾驶系统成为前沿领域 视觉语言模型(VLM)方法受到工业界和学术界广泛关注[1] - 现有VLM训练范式依赖自由格式文本标注 存在同义表达复杂性和信息冗余问题 增加模型学习难度和计算开销[1] - 基准模型通常依赖超70亿参数的大语言模型 导致高昂计算成本、内存消耗和推理延迟[3] NuScenes-S结构化数据集 - 数据集包含102K问答对 其中84K用于训练 18K用于测试[21] - 场景描述结构化要素包括:天气(5类)、交通状况(3类)、驾驶区域(7类)、交通灯(3类)、交通标志(8类)、道路状况(4类)、车道线(8类)、时间(2类)[7][8] - 感知预测任务包含:相机视角(6类)、2D边界框坐标、未来状态(7类)[12] - 决策任务分为横向移动(5类)和纵向移动(4类)[13] - 构建过程采用GPT预标注+人工细化的混合方式 通过规则提取关键目标[9] FastDrive算法模型 - 采用0.9B参数紧凑设计 相比传统70亿+参数模型大幅降低计算资源需求[4] - 网络架构遵循"ViT-Adapter-LLM"范式 包含视觉编码器(ViT主干)和LLM代理(Qwen2.5)[17][19] - 引入TokenPacker模块减少标记数量 提升推理速度[18] - 实现思维链式推理流程 完成场景理解→感知→预测→决策的全流程[19] 实验性能表现 - 语言指标:FastDrive256版本BLEU-4达70.36 ROUGE_L达87.24 显著优于DriveLM基准[22] - 场景理解准确率:天气识别99.95% 交通标志识别87.64% 全面超越对比模型[22] - 预测决策任务:在车道线状态预测(76.49%)和纵向控制决策(82.06%)等关键指标领先[22][25] - 消融实验证实结构化标注使决策准确率提升12.8%[24][25] 技术社区生态 - 自动驾驶技术社区覆盖30+技术方向 包括BEV感知、多传感器融合、轨迹预测等前沿领域[27] - 专业课程体系包含端到端自动驾驶、大模型部署、NeRF等20+细分方向[29] - 行业参与度:近300家企业和科研机构加入 形成4000人规模交流社区[27]