Workflow
Network Search Agent
icon
搜索文档
100轮工具调用,8B小模型也能做复杂长搜索!MiniMax&港科大最新开源
量子位· 2025-09-12 08:46
不圆 发自 凹非寺 量子位 | 公众号 QbitAI 网络搜索Agent效果不好,猛猛投喂一波数据,表现还那样,咋回事? 港科大&MiniMax团队指出问题核心:不是模型参数不够多,而是缺乏足够有挑战性的训练数据。 换句话说,别死记硬背了,来做点"真题"吧。 他们提出了一种构建高质量QA对的方法 WebExplorer 。 用该方法构建的数据集去训练,即使是较小的模型,也可以在复杂、长程的搜索任务上超越更大的模型。 训练后的8B模型支持高达 128K的上下文长度 和 100次工具调用轮次 的长期推理,能在参数量低于10B的模型中取得顶尖结果。 网友评价:用模型驱动的方式做探索,确实比传统图谱方法更能让智能体的浏览行为变灵活。 模型及数据集均已开源,链接可见文末。 优质训练数据稀缺 随着大语言模型(LLM)的快速发展,智能体的能力边界不断扩展。 网络搜索智能体作为这一发展的重要组成部分,能够自主地从广泛的在线资源中检索信息;长视野(Long-Horizon)网络智能体更是需要在 多个网站间进行复杂的推理和搜索。 可是呢, 现有的开源网络智能体在处理复杂搜索任务时往往表现有限,更强大的商业模型又缺乏透明的训练细节 ...