强化学习(Reinforcement Learning

搜索文档
强化学习框架的演进与发展趋势
自动驾驶之心· 2025-08-18 23:32
模型训练范式转变 - 2024年OpenAI发布O1系列模型后,训练重心从有监督微调(SFT)转向强化学习(RL),SFT作用弱化为参数初始化或策略引导[3] - RL算法持续迭代优化,从早期DPO到PPO,再到GRPO、RLOO、Reinforce++、DAPO等新方法,在策略更新方式、稳定性和样本效率方面不断提升[4] - RL训练流程包含三大模块:策略生成(Rollout)对应模型推理扩展阶段、奖励评估(Reward Evaluation)对应结果质量打分、策略更新(Policy Update)对应核心参数优化[4][6][7] RL训练框架设计挑战 - Rollout与训练模块需顺序执行,但分布式多卡训练趋势下,异构资源管理和参数同步机制成为关键挑战[12][13] - 底层训练框架(如Megatron-LM、DeepSpeed、PyTorch FSDP)与推理引擎(如vLLM、SGLang)架构差异大,导致参数同步和推理调度实现逻辑复杂化[14][25] - Rollout任务存在显著异构性,尤其在Agent行为模拟场景下,批次内部任务复杂度差异导致调度效率下降和资源利用率不均衡[19] 性能优化策略 - 7B参数模型在FP32精度下需约28GB显存存储参数和梯度,优化器状态额外占用84GB,单卡无法承载[21] - 分布式训练采用数据并行(DP)、张量并行(TP)、流水线并行(PP)策略,千卡规模以下DP与TP/PP性能相近,更大规模下TP/PP因避免All-Gather通信开销更具优势[22][23] - 推理引擎(vLLM、SGLang)通过KV Cache复用和算子优化提升性能,但与训练引擎的参数同步仍需解决精度差异问题[25][28] 训练与推理集成架构 - SPMD(单程序多数据)模式适用于数据量大但模型规模小的场景,MPMD(多程序多数据)模式支持异构程序执行但增加实现复杂度[29][39] - SLIME框架通过Buffer中间件实现推理引擎与训练模块间数据传输,支持命令行配置灵活适应业务需求[34][35] - ROLL框架通过集群角色定义(actor_train、actor_infer、reference等)隐藏训练与推理差异,支持按领域分开采样和奖励模型聚合[42][44] 分布式部署与资源管理 - 模型规模增大(如1000B参数)使并行计算开销显著,Reward模型较小(7-30B)适合分开部署[48] - Ray框架帮助管理分布式资源,但设计与Kubernetes云原生环境存在冲突,实际生产环境管理成本较高[53] - 非Colocation场景下,ROLL支持细粒度GPU资源配置提高资源利用效率,但要求算法侧具备更高资源调度能力[50] 框架技术选型 - OpenRLHF集成Ray、vLLM、ZeRO-3和HuggingFace Transformers,支持灵活混合部署适应异步训练需求[52][61] - SLIME代码简洁适合研究性修改,ROLL强调数据处理和异步操作支持Agentic RL探索,VERL稳定优化适合大规模集群部署[61] - 开源RL框架(VERL、SLIME、ROLL、OpenRLHF)展现技术领先性,但硬件资源(如显卡)仍存在差距[60]