Quantum Machine Learning
搜索文档
MicroAlgo Inc. Announces a Quantum Entanglement-Based Novel Training Algorithm — Entanglement-Assisted Training Algorithm for Supervised Quantum Classifiers
Globenewswire· 2025-05-16 12:00
文章核心观点 - 公司宣布开发基于量子纠缠的监督量子分类器训练算法,突破传统算法能力限制,虽量子计算面临挑战但该技术在机器学习领域潜力大 [1][12] 算法介绍 - 开发新型基于量子纠缠的监督量子分类器训练算法,引入基于贝尔不等式的成本函数,可同时编码多个训练样本误差 [1] - 算法核心是利用量子纠缠构建能同时处理多个训练样本及其标签的模型,可并行处理多个样本,提升训练效率 [2] - 用量子叠加将训练样本表示为量子比特向量,通过量子门操作将标签信息编码到量子态,利用纠缠关系同时处理多个样本 [3] - 基于贝尔不等式的成本函数可同时编码多个样本分类误差,优化过程考虑多个样本集体性能,克服传统算法局部优化问题 [4] 算法实现 - 依赖量子计算技术的量子比特、量子门操作和量子测量等核心组件处理输入数据 [5] - 算法初始阶段将输入训练样本转换为量子比特并初始化为特定量子态,对多个量子比特进行纠缠操作 [6] - 训练样本被安排成纠缠态,通过纠缠共享和处理信息,提高数据处理效率并加速训练收敛 [7] - 利用贝尔不等式构建成本函数以最小化分类误差,通过量子算法计算有效最小化成本函数 [8] - 算法通过量子测量输出分类结果,量子计算并行处理能力可在短时间内完成复杂分类任务 [8] 技术优势 - 利用量子纠缠特性并行处理多个训练样本,加速训练速度并提高分类准确率,可克服传统方法处理大数据集的计算瓶颈 [9] - 基于贝尔不等式的成本函数理论上更稳健,可避免传统方法的局部最优问题,在复杂分类任务中更有效 [10] 面临挑战 - 量子计算面临稳定性和计算规模等限制,量子比特数量和误差率影响算法实际性能,在现有平台实现高效算法需突破技术障碍 [11] 公司概况 - 公司致力于定制中央处理算法的开发和应用,通过将算法与软硬件结合为客户提供综合解决方案 [13] - 服务包括算法优化、加速计算能力、轻量级数据处理和数据智能服务等,高效交付软硬件优化是长期发展动力 [13]
MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum Machine Learning
Prnewswire· 2025-05-02 15:10
技术突破 - 公司推出基于变分量子算法(VQA)的分类器自动优化技术,通过核心电路的深度优化显著降低训练过程中的参数更新复杂度,大幅提升计算效率[1] - 与传统量子分类器相比,该优化模型具有更低复杂度并采用先进正则化技术,有效防止模型过拟合并增强分类器泛化能力[1] - 技术突破主要体现在量子电路深度优化降低计算复杂度、哈密顿变换优化(HTO)提升效率至少一个数量级、量子纠缠正则化(QER)增强稳定性等核心方面[6][7][8] 行业痛点 - 当前主流量子分类器需要深量子电路实现高效特征映射,导致量子参数优化复杂度高且训练数据量增加时计算负荷快速上升[2] - 变分量子分类器(VQA)面临参数空间复杂、量子测量噪声影响稳定性等挑战,传统优化方法存在收敛速度慢和陷入局部最优等问题[4][5] 技术细节 - 采用自适应电路剪枝(ACP)方法动态调整电路结构,在保持分类器表达能力的同时显著减少训练所需参数数量[6] - 引入基于哈密顿变换的优化方法,通过改变变分量子电路的哈密顿表示缩短参数空间搜索路径[7] - 开发变分量子纠错(VQEC)技术主动学习噪声模式并调整电路参数,在NISQ设备噪声环境中提升分类器鲁棒性[10] 应用前景 - 该技术通过核心电路优化与新型正则化方法的结合,在理论验证和模拟实验中均表现出优越性能[11] - 随着量子计算硬件发展,该技术将加速量子智能计算的实用化进程,推动量子计算进入实际应用新阶段[12] 公司背景 - 公司专注于定制化中央处理算法的开发与应用,通过算法与软硬件整合为客户提供算力加速、数据处理轻量化等解决方案[13] - 服务范围涵盖算法优化、计算能力提升、数据智能服务等领域,长期发展驱动力来自通过定制算法高效交付软硬件优化的能力[13]
MicroAlgo Inc. Develops Quantum Edge Detection Algorithm, Offering New Solutions for Real-Time Image Processing and Edge Intelligence Devices
Prnewswire· 2025-05-01 15:50
量子边缘检测算法突破 - 公司新开发的量子边缘检测算法突破经典方法限制,通过量子电路优化特征提取过程,将计算复杂度从O(N²)降至O(N),同时保持检测精度,为实时图像处理和边缘智能设备提供新解决方案 [1] - 该算法基于量子态编码和量子卷积原理,利用量子并行性同时处理多个像素邻域,通过量子叠加态模拟经典卷积核的加权求和过程,在噪声鲁棒性、多尺度特征融合和计算能效方面显著优于经典算法 [2] 技术架构与实现细节 - 采用"量子预处理-量子特征提取-经典后处理"混合架构:通过振幅编码技术将二维图像矩阵转换为量子态输入,3个量子比特即可编码8位灰度图像的单个像素 [3] - 量子边缘检测操作使用参数化量子门(如RY门和CNOT门)设计可训练量子滤波器,动态调整检测灵敏度和方向性,量子噪声抑制电路利用量子纠错码减少椒盐噪声影响 [4] - 通过变分量子算法(VQA)优化电路参数,结合经典优化器(如Adam)形成量子-经典反馈循环,实现算法自适应调整 [6] 性能优势与应用场景 - 量子主成分分析(QPCA)将高维数据特征提取时间复杂度从O(N²)降至O(N),能耗仅为传统GPU集群的1/100,量子态叠加特性显著扩展特征探索空间,避免局部最优问题 [7] - 已在医疗影像分析(精确定位脑肿瘤边界)、遥感图像处理(降低复杂海况下水体误检率)、工业质检(实现精密部件亚像素级裂纹检测)和自动驾驶(提升大雨中车道线识别精度)等领域实现商业化应用 [8] - 未来将拓展至多模态图像融合、加密图像分析和光子量子芯片集成等方向,重塑智能安防和生物医学等领域的图像处理范式 [9] 公司背景与业务模式 - 专注于定制化中央处理算法的开发与应用,通过算法与软硬件集成帮助客户增加用户数量、提升终端满意度、实现直接成本节约和降低功耗 [10] - 服务范围包括算法优化(无需硬件升级即可加速算力)、轻量化数据处理和数据智能服务,定制化算法能力是其长期发展的核心驱动力 [10]