今年的VLA+RL的工作正在排队等着录用......
具身智能之心·2025-12-24 00:25

点击下方 卡片 ,关注" 具身智能 之心 "公众号 最近在盘VLA+RL的工作,不管是基于世界模型的在线方案,还是offline,VLA好像始终离不开RL。仅依赖 模仿学习的 VLA 在真实世界 OOD 场景中仍然脆弱,缺乏失败恢复、自主探索与闭环纠错能力。强化学习 (RL)的优势在于能够显著提升VLA模型的泛化能力,一些工作的实验显示分布外任务上的性能提升可达 42.6%。有效果,就有很多工作继续跟进,今年产出了好多篇paper~ 近期的几个工作,包括wholebodyvla、pi0.6、GR-RL都取得了惊艳的效果,pi0.6推出的时候很多同学说大概 率就是+强化。世界模型加持的在线系统也是比较活跃的方向,期望有更多突破。 工具上,VLA+RL框架也在逐渐完善,这里也推荐下于超老师那边的Rlinf,支持的方法越来越多。 链接:https://github.com/RLinf/RLinf 由于相关工作众多,这里给大家分享一些这两年比较有代表性的VLA+RL工作,这些paper陆续被不同的会 议收录。 ❝ 我们也建议后续的研究可以往此方向靠拢,如果不知道怎么展开研究也欢迎咨询具身智能之心的科研助理,一 键启动 ...