文章核心观点 - 2025年被定义为“Agent元年”,行业焦点从年初的宏大叙事转向年末的工程化落地,Agent正从技术萌芽走向务实应用 [1][2][3] - Agent的快速共识源于其能真正解决问题,并伴随一系列工程方法(如Agent Infra、Runtime、架构范式)的快速成型,实现了落地 [12] - Agent落地面临的核心挑战是其作为一个“不确定性的复杂系统”,需要确定性的工程方法(如科学实验思维、Day Two思维)来驾驭 [6][19][20] - Agent Infra是智能体落地的关键一环,它通过解决安全、执行环境、工具、记忆和观测等“偶然复杂度”问题,为Agent的可靠运行和智能进化提供支撑 [5][23][38] Agent发展阶段的总结 - Agent发展已从年初硅谷的“宏大叙事”和“立法阶段”(靠Demo吸引资本),进入年末充满“烟火气”的“司法阶段”,处理具体、琐碎的执行问题,走向务实 [6][9][10][11] - 行业发展并非线性进步,而是“根茎状的蔓延”,秩序的建立更多依赖于产品工程、提示词工程、RAG、Pipeline等“胶水”技术 [12] - 共识的形成部分源于资本在互联网红利见顶后,寻求新的组织方式,Agent承诺了“交互成本的坍塌” [12][13] Agent落地与AI落地的区别 - 范式发生明显转移:从传统的if/else逻辑判断和确定性功能交付,转向Agent的“概率性目标规划”和“概率性能力”交付 [14][18] - 关键区别在于“新增了很多不确定性”:Agent的失败是对意图的误解或概率漂移,修复方式从“修Bug”变为像“教育孩子”一样进行约束 [18] - Agent是一个由模型、架构、Prompt、工具等七八个因素相互影响构成的“不确定性的复杂系统”,其输出具有不确定性,与传统微服务系统相反 [19] Agent Infra的角色与关键要素 - Agent Infra的核心作用是解决企业在Agent落地中遇到的“偶然复杂度”问题,而非业务本身的本质复杂度 [6][23] - 当前Infra层致力于构建解决偶然复杂度问题的“最大公共子集”,包括:安全、执行环境、工具、记忆和观测 [23] - 在Agent Infra中,“安全”尤其是“Agent的自主运行”带来的破坏性风险是最突出的问题,需要多层次、全链路的安全体系(如安全沙箱)来解决 [21][25][26] - 对于Infra的开闭源选择呈现分层互补:初创公司和创新者倾向于开源以获得低成本、灵活性和透明度(白箱);大企业则倾向于商业版或闭源以获得责任转移与兜底服务 [27][28][29] 技术进展与未来趋势 - AI代码工具成为标志性实践和重要趋势:它不仅是解决代码问题的工具,更成为Agent连接现实世界的通用接口,并颠覆了原有的软件工程范式,推动从AI Coding到AISE(AI软件工程师)的转变 [7][33][34] - 技术正在从开发者向非开发者移动,简化程度逼近“AI开发的Excel时刻”,将基础设施认知负荷降至最低,使开发者能聚焦于Prompt和数据治理 [31][35] - Agent Infra的下一步重点是从“服务好Agent的运行构建”转向“服务好Agent的智能进化”,关注其安全可靠运行,并利用运行数据持续优化Agent本身和模型 [38] - 未来重点方向可概括为:秩序(让混乱模型可控)、连接(打通Agent孤岛融入业务)、自动(任务自动化)、安全高效、智能进化、人机协同 [39] - 记忆管理需要超越简单的向量搜索,关注语义化的情景记忆和可计算的时间观,将记忆和目标视为可重写、降级的变量并进行置信度处理 [40] 对开发者和企业的影响与门槛 - 对于中小公司和个人开发者,最大的门槛并非技术或成本,而是缺乏开始的勇气以及企业数据的壁垒;同时,商业模式的探索和转变是关键,因Agent尚未到全面改变社会商业模式的阶段 [6][40] - 对于专业开发者和AI原生企业,Infra产品主要帮助治理其面临的复杂问题,加速Agent落地 [31] - 若Agent成为主流,将对移动开发生态产生影响:公司会要求在APP中集成Agent能力,促使开发者思维从工程转向科学实验;利用AI Coding工具开发APP则要求改变协同模式和工具体系 [41][44] - 未来的应用交互形态(如iOS/Android)尚无定论,但只有那些与AI工具为伍、改造研发流程并用科学实验思维驾驭不确定性的人,才能抓住形态转移的机遇 [42][43]
智能体落地元年,Agent Infra是关键一环|对话腾讯云&Dify