遥遥无期的AGI是画大饼吗?两位教授「吵起来了」
机器之心·2025-12-21 04:21

文章核心观点 - 文章围绕“AGI能否实现”这一核心议题,呈现了两种对立的观点:一种基于物理和成本限制认为AGI和超级智能无法实现[3][7][28],另一种则认为当前AI系统在软硬件效率上仍有巨大提升空间,通往更强AI的道路多样,实用化的“类AGI”能力可能并不遥远[33][36][66] 对AGI的悲观论据(物理与成本限制) - 计算受物理规律制约:计算是物理过程,需要在局部计算与全局信息移动间取得平衡,随着晶体管缩小,计算变便宜但内存相对变贵,芯片面积主要被内存占据,导致算力可能因内存服务不足而成为“无效算力”[8][10][11] - Transformer架构已接近物理最优:该架构以最简单方式结合了局部计算与全局信息汇聚,是对信息处理单元的物理层面优化[11][12] - 线性进步需要指数级资源:在物理现实和观念空间中,要获得线性改进,所需投入的资源呈指数级增长,观念创新因领域庞大而边际收益递减[13][15] - GPU进步已停滞:GPU在“性能/成本”指标上于2018年左右达峰,后续改进多为一次性特性(如16位精度、Tensor Core、HBM等),现已走到尽头,任何进一步改进都将是权衡而非纯收益[16][17] - 规模化收益面临极限:过去GPU的指数级增长对冲了规模化所需的指数级成本,但现在规模化已变成指数级成本,物理极限可能在一到两年内逼近,规模化收益不再显著[20] - 基础设施优势可能迅速蒸发:若研究/软件创新、强大的开源推理栈或向其他硬件平台迁移取得突破,前沿实验室的大规模基础设施优势可能一夜消失[21][22][26] - 超级智能是幻想:超级智能自我改进引发爆炸增长的前提错误,智能改进受物理现实和缩放规律制约,线性改进需指数级资源,其发展更可能是填补能力空白而非推动边界外扩[28][29] - AGI需具备物理执行能力:真正的AGI需包含能在现实世界完成经济意义工作的实体机器人,但机器人领域数据收集成本高昂,现实细节复杂,许多问题经济上并不划算[25][27] 对AGI的乐观论据(效率与创新空间) - 当前AI系统被严重低估,效率远未达上限:训练效率比几年前更低,例如DeepSeek-V3和Llama-4训练的MFU仅约20%,而2022年的BLOOM项目已达50%,当前模型设计并非为最高硬件利用率[39][41] - 推理效率存在更大提升空间:最优化推理实现关注带宽利用率(MBU),FLOP利用率(MFU)常为个位数(<5%),这并非物理根本极限,而是当前自回归架构规模化带来的限制[43][44] - 新一代硬件提供显著算力提升:Blackwell架构芯片的FP8吞吐量是Hopper的2.2倍,并支持原生FP4 Tensor Core,GB200等机架级方案可缓解通信瓶颈,高效FP4训练理论上可将可用FLOPs提升最多9倍[42][50] - 模型是硬件的滞后指标:当前模型反映的是上一代硬件能力,而新一代超大规模集群(如10万卡以上)正在建设,意味着高达50倍的算力建设正在发生[47][48] - 明确的效率提升路径:通过训练高效的架构协同设计、高质量高效率的FP4训练、推理高效的模型设计(如扩散式语言模型)等方式,可大幅提升硬件利用率[45][46][52] - 已有AI工具产生巨大经济影响:以更务实的定义,一套在某些任务上比大多数人做得更好并能产生巨大经济影响的通用工具体系,可能并不遥远,例如当前模型已在编程等领域越过关键阈值[60][61] - 即便能力不提升,应用场景仍广阔:假设模型能力冻结,系统层面的效率改进也足以让许多高影响力应用落地,且通过新的后训练范式、更好的样本效率等方法,可继续推进“有用AI工具”[62][63][65] 行业路径与理念差异 - 中美AI发展路径不同:美国遵循“赢家通吃”思路,追求构建最大最强的超级智能模型;中国理念更侧重应用,认为模型能力本身没有应用重要,关键是实用性和以合理成本提升生产力[23][24] - 不同理念的可持续性:在模型能力增速放缓的背景下,追求超级智能的目标可能遭遇困难,而推动AI经济扩散的务实思路可能更具长期优势[24][30]