Workflow
100美元、仅8000行代码,复现ChatGPT,Karpathy:这是我写过的最疯狂的项目
Founder Park·2025-10-14 04:18

项目概览 - 特斯拉前AI总监、OpenAI创始成员Andrej Karpathy发布全新开源项目“nanochat”,这是一个极简但完整的“从零构建ChatGPT”训练框架 [3] - 该项目被描述为LLM101n的“压轴之作”,并可能成为未来研究基线和开源社区的实验平台 [8][16] - 项目核心理念是降低LLM研究与复现门槛,让每个人都能亲手训练自己的模型,延续了其在nanoGPT时期倡导的民主化路线 [12][22] 技术规格与成本效益 - 整个系统仅需约8000行干净代码,在一台GPU机器上运行约4小时后,即可通过网页界面与训练的“小ChatGPT”对话 [7][25][26] - 项目全程花费低至约100美元,可训练出一个能创作故事/诗歌、回答简单问题的小型ChatGPT [10][13] - 训练约12小时即可超过GPT-2的核心指标,将预算扩展到约1000美元(训练约41.6小时)后,模型能解决简单的数学/代码问题并做多项选择题 [10][11][13] 功能与性能 - nanochat涵盖从数据准备、预训练、中期训练(对话、多项选择题、工具使用)、SFT、RL微调到推理部署的全流程 [6] - 训练24小时的模型(FLOPs大致相当于GPT-3 Small 125M,约为GPT-3的1/1000)在MMLU上得分进入40分段,在ARC-Easy上进入70分段,在GSM8K上进入20分段 [11] - 项目实现了高效的推理引擎,带有KV缓存,支持简单的预填充/解码,工具使用(如Python解释器),并可通过CLI或类ChatGPT的网页界面交互 [12] 项目定位与影响 - nanochat被视为“LLM生态系统微缩版”,与nanoGPT构成“从神经网络基础到产品级对话系统”的两步闭环 [17][18][19][20] - 项目在放出不到12小时内,GitHub星标就突破4.2k,显示出开源社区的高度关注 [4][6] - Karpathy的目标是将完整的“强基线”技术栈整合到一个连贯、极简、可读、可修改、可最大化派生的代码仓库中 [14]