Workflow
Sim2Real,解不了具身智能的数据困境。
自动驾驶之心·2025-10-03 03:32

核心观点 - 具身智能领域正面临仿真数据、真实数据与世界模型三种技术路线的选择与融合,行业专家普遍认为仿真数据在当前及可预见的未来具有不可替代的作用,尤其是在模型训练、测试和安全验证方面,而世界模型作为新兴方向,在长期规划和数据生成方面展现出潜力,但其发展仍受限于奖励机制设计、计算资源等因素 [4][19][27] 对Sim-to-Real Gap的理解 - Sim-to-Real Gap的核心在于仿真环境对真实世界模拟不完全,存在视觉细节(如物体摩擦力、光影效果)和物理细节还原不足的问题,导致模型泛化能力弱、仅适配特定场景 [8] - 缩小差距需围绕数据优化展开,包括结合模型需求设计虚拟与真实数据配比、借助AIGC生成丰富数据以兼顾体量与真实性等 [8] - 以阴影问题为例,不同光源位置会形成不同阴影,可作为判断模型对真实世界理解程度的有效依据 [8] - 解决数据问题的一种方案是借助AIGC强大的生成能力,通过替换桌面纹理、光照、物体摆放等方式,兼顾数据丰富性与真实性 [11] 仿真数据与真实数据的价值与应用 - 在自动驾驶等领域,仿真测试已被验证更快速、省时省力且安全,训练用真机更务实,测试用仿真更合适是核心观点之一 [19] - 从学术角度看,若真机数据能极大丰富,同等数量下其训练效果优于仿真数据,但现实是具身智能领域真实数据体量远不及自动驾驶,且机器人本体不易统一,行业期待高,导致真实数据缺口巨大 [20] - 仿真数据在当前阶段的关键作用在于基础模型迭代和测试,没有机构会训完模型不做仿真测试就直接上真机,可避免真机实验中烧电机、损坏关节等难以估量的损失 [21] - 仿真在强化学习规模化上价值更大,若仿真器构建良好,可通过大规模并行训练让模型学习到真实数据中难获取的场景(如物体被碰倒后如何处理) [24] - 仿真数据的核心优势包括代码复用性强(更换机器人时仿真代码基本无需改动)以及在教育领域的显著价值,能降低授课与学习门槛 [26] - 长期来看,仿真数据是更有效的解决方案,只有在仿真无法满足需求时才考虑使用真实数据进行补充 [26] 世界模型的未来研究方向与价值 - 世界模型应用于自动驾驶、具身智能的方向正确,但存在核心问题待解决,如“小世界模型”路径是否可行(即能否基于其直接生成轨迹或策略),以及奖励设计与下游任务衔接问题 [29] - 世界模型并非新概念,与过往相关模型概念相通,该领域研究无需大量计算资源,学术界应聚焦用小资源就能探索的学术问题 [29] - 引入力、触觉等新模态是值得关注的研究方向,可聚焦世界模型中物理规律的相关问题,在有限计算资源下开展尝试 [30] - 在未来12-18个月内,最重要的科学问题是如何在世界模型中引入reward,因为action和observation已有较好发展,而操作领域仍处于混沌状态,适合科研探索 [31] - Genie 3虽能渲染视频且三维一致性较好,但在面向机器人等场景时,当前动作维度(如六维、七维)不足,仍需数据引擎构建对应场景来生成高维度动作数据 [32] - 世界模型的研究对于通用视觉、长期规划和记忆功能等方面展现出潜力,但如何设计合适的奖励机制以及如何应用于更多场景是关键待解问题 [32] 对波士顿动力机器人技术的分析 - 波士顿动力机器人的技术实力体现在其执行任务的“丝滑”性,这不仅涉及单纯的抓取操作,还涉及全身运动,其遥操作部分技术难度很高,需要出色的运动控制作为支撑 [33][35] - 该系统的模型设计若不复杂,但结合出色的底层能力实现了好效果,比设计复杂模型更令人震惊,目前在遥操作素材采集上就落后于该系统 [35] - 具身智能领域的关键不在于算法,而在于数据和硬件,波士顿动力的硬件技术方案与教育界常用方案差异显著,其高度拟人化设计代表了正确发展方向,但核心问题在于其硬件产品并不对外出售 [37] - 实现丝滑效果的另一关键因素是推理层面的架构经过大量调整优化,“避免阻塞”这一问题即便有专门研究,开源方案仍有很大改进空间 [37] - 运动控制(运控)水平的差异是表现差异的重要原因,传统控制的相关技术值得被结合、借鉴到现代具身智能中,以提升机器人动作的流畅性 [38][39]