纯血VLA综述来啦!从VLM到扩散,再到强化学习方案
具身智能之心·2025-09-30 04:00

视觉-语言-动作模型综述的核心观点 - 该综述系统性地总结了纯视觉-语言-动作方法的研究现状,旨在填补现有综述在纯VLA方法上的空白,并提出清晰的分类体系以阐明该领域的演进轨迹 [4][8] - VLA模型通过提供统一框架将视觉感知、语言理解和可执行动作相结合,标志着通用具身智能发展的重要一步,其目标是克服传统机器人系统在动态和非结构化环境下泛化能力差的问题 [11][14] - 该领域正从单一生成范式向混合架构演进,结合自回归、扩散和强化学习等多种范式的优势,以应对复杂任务,并朝着更高效、安全且易于部署的通用机器人系统发展 [18][56][57] 背景与发展脉络 - VLA模型的发展建立在单模态建模突破的基础上,早期LLM/VLM基础模型如Transformer架构和对比学习方法为多模态整合奠定了方法学基础 [12][13] - 从LLM/VLM到VLA模型的演进体现在将图像、指令和机器人状态统一编码为token,并通过自回归生成动作序列,从而在单一序列建模框架下实现感知-语言-动作的闭环 [14] - VLA模型被视为实现通用具身智能的关键前沿,其通过结合视觉编码器、大语言模型和强化学习的决策能力,展现出弥合“感知-理解-行动”鸿沟的重要潜力 [17] VLA方法学范式 自回归范式 - 自回归模型通过将动作序列视为时间相关过程,在Transformer架构中统一多模态感知和动作生成,支持跨任务泛化的通用代理,代表性工作包括Gato、RT-1/RT-2和PaLM-E [19][21] - 该范式通过引入LLM实现语义规划和分层推理,增强了长时任务和复杂指令的处理能力,但面临误差累积、多模态对齐脆弱以及高计算成本等限制 [24][26][32] - 结构优化方向聚焦于降低计算冗余和提升实时性,采用层级分解、自适应推理和轻量化压缩等策略,以改善部署效率 [30][31] 扩散范式 - 扩散模型将机器人控制重新表述为概率生成问题,通过条件去噪过程支持多样化的动作分布生成,在几何一致性(如SE(3)约束)和视频生成式规划方面展现出优势 [33][37] - 多模态架构融合趋势将Transformer与扩散模型结合,实现异质模态的统一表征,并引入显式推理模块和领域专用设计(如力觉感知)以提升性能 [38][39] - 应用优化方向通过轻量化设计(如TinyVLA)、认知启发式架构和运行时鲁棒性机制,推动模型从实验室原型向真实世界部署过渡 [40][42][44] 强化学习范式 - 强化学习微调策略通过视觉和语言信号生成可迁移的奖励代理,结合离线行为克隆和在线强化学习稳定策略优化,并扩展至四足机器人、人形机器人和自动驾驶等场景 [48][51][53] - 安全导向方法如SafeVLA引入约束学习对齐机制,在开放环境中防止高风险动作,但奖励工程的噪声信号和训练稳定性仍是挑战 [50][54] - 效率优化策略采用量化、剪枝和知识蒸馏等技术,在保持任务成功率的同时降低内存使用和提升推理速度 [53] 混合与专用方法 - 混合架构整合自回归、扩散和强化学习等多种范式,以兼顾推理精度与动作生成的物理一致性,代表性工作如HybridVLA在单一框架中结合扩散轨迹和自回归推理 [56][57] - 高级多模态融合强调3D空间理解和显式几何约束建模,从早期2D特征拼接转向模块化、具3D意识的架构,以提升在非结构化环境中的操作可靠性 [59][60] - 领域适配将VLA原则扩展至自动驾驶、人形机器人控制和GUI交互等特定场景,通过专用数据集(如CoVLA)和层级化设计解决领域独特挑战 [61][62] 数据集与仿真资源 - 高质量数据集是VLA模型发展的基石,真实世界数据集如Open X-Embodiment整合了来自21个机构的22个机器人数据集,覆盖527种技能和160,266个任务,显著提升了模型的泛化能力 [16][71][76] - 仿真数据集通过虚拟环境生成大规模标注数据,支持可扩展训练和安全测试,代表性平台包括THOR、Habitat和CARLA,它们提供了多样化的交互场景和传感器配置 [16][80][81] - 基准评测常用成功率、语言跟随率和轨迹误差等指标,并通过迁移到未见环境评估模型的鲁棒性,仿真基准如VIMA-BENCH和CALVIN设计了多级协议以系统化测试泛化能力 [76][79][82]