Workflow
聊一聊AI ASIC芯片
傅里叶的猫·2025-09-28 16:00

最近看了很多国内券商的研报,不得不说,有些质量还是非常高的,之前大家可能对国内券商的研 报有些误解。这篇文章参考自申万宏源的一个分析,来看下AI ASIC。 商业上,ASIC 是专用芯片,为下游特定场景(如训练、文本推理、视频/音频推理)定制,与客户 应用高度绑定。GPU 则是通用芯片,需兼容多场景,包括图像渲染,因此华为昇腾 NPU 或寒武纪 AI 芯片也可视为通用型。 ASIC 优势在于特定场景的高效与低功耗。GPU 基于冯诺依曼架构,运算需频繁寄存器交换,对存 储需求高,且保留图形渲染等闲置模块;ASIC 如谷歌 TPU、AWS Trainium2 采用脉动阵列架构,专 为矩阵运算设计,结果直接传递,减少数据交互,提高效率。 谷歌 TPU v5 测试显示,能效比为英伟达 H200 的 1.46 倍;在 BERT 推理中,每瓦性能提升 3.2 倍。 优势源于三点:3D 堆叠优化算力密度、DVFS 降低闲置功耗、HBM3e 内存突破带宽瓶颈(达 1.2TB/s)。 ASIC 单位算力成本更低。亚马逊 Trainium2 训练成本降 40%,推理降 55%;10 万卡集群可节省 12 亿美元初始投资。 大厂自 ...