VLA技术演进 - VLA成为自动驾驶主流关键词 新势力企业下半年集中抢占VLA技术高地[1] - 传统模块化架构存在错误累积效应和信息损失问题 依赖人工规则难以应对复杂交通场景[4] - 纯视觉端到端方案存在黑箱问题和因果混淆缺陷 泛化能力受限于训练数据覆盖范围[4][5] - VLA范式通过语言中间表征连接感知与行动 赋予模型推理解释和交互能力[5] - VLA模型利用LLM预训练的世界知识理解交通场景 实现更符合逻辑的决策[5] 学术研究课程 - 课程提供12周在线小组科研加2周论文指导和10周论文维护期[7][14] - 覆盖语言模型解释器 模块化VLA模型 统一端到端VLA模型 推理增强VLA模型四大研究方向[7] - 学员将获得经典论文与前沿论文分析能力 掌握创新点baseline和数据集使用方法[12] - 课程提供baseline代码和可用数据集 包括nuScenes Waymo Argoverse等自动驾驶数据集[23] - 配备2+1多师制教学团队 包括主导师副导师和科研论文班主任[23] 技术资源支持 - 提供基于模仿学习的端到端自动驾驶开源代码库包括VAD和UniAD项目[24] - 提供基于扩散模型的端到端自动驾驶项目DiffusionDrive和OccNet[24] - 开放VLA端到端自动驾驶项目OpenDriveVLA SimLingo和Senna[24] - 课程必读论文包括Senna SimLingo OpenDriveVLA和ORION等最新研究成果[25] - 硬件要求最低配置为4张4090显卡 推荐配置为8张4090显卡或更高性能设备[20] 课程体系设计 - 14周课程包含传统端到端自动驾驶介绍 VLA架构详解和模块化模型研究[26][27] - 每周安排1-1.5小时课程 包含课题概览 选题讨论 算法详解和论文写作方法论[26] - 学员需具备深度学习基础 熟悉Python和PyTorch 最好掌握Linux开发环境[16][20] - 课程要求每周课前阅读资料并完成作业 课后自学时间至少1-2小时[20] - 最终产出包括论文初稿 项目结业证书和优秀学员推荐信[23]
作为研究,VLA至少提供了一种摆脱无尽corner case的可能性!
自动驾驶之心·2025-09-15 03:56