Workflow
腾讯研究院AI速递 20250915
腾讯研究院·2025-09-14 16:01

OpenAI与微软合作及发展前景 - OpenAI与微软发布非约束性合作备忘录 涉及云服务托管 知识产权归属和AGI控制权等核心问题 但最终合作条约仍未确定[1] - OpenAI预计成立估值超1000亿美元的公益公司(PBC) 非营利机构将持有股权并保持控制权 成为全球资源最充足的慈善组织之一[1] - OpenAI面临巨大成本压力 预计2029年前烧掉1150亿美元 仅2030年就需花费1000亿美元租赁服务器 未来几年几乎没有容错空间[1] AI影视内容创作突破 - 前谷歌X团队创立全球首家AI原生影视工作室Utopai 两部电影项目已带来1.1亿美元收入 锁定戛纳电影节[2] - Utopai突破AI视频生成三大难题:一致性 可控性和叙事延续性 实现毫秒级精准对口型 模型内置物理规律的3D数据训练[2] - 公司定位为内容+AI而非纯工具供应商 已获好莱坞顶级资源支持 为电影《科尔特斯》邀请奥斯卡提名编剧 八集科幻剧《太空计划》成功预售欧洲市场[2] 音乐生成技术进展 - MiniMax发布新一代音乐生成模型Music 1.5 支持长达4分钟的完整歌曲创作 具备强控制力 人声自然饱满 编曲层次丰富和歌曲结构清晰四大突破[3] - 模型支持"16种风格×11种情绪×10个场景"自定义音乐特征 能生成不同声线唱腔 并支持中国民族乐器生成 真正实现Intro/Verse/Chorus段落分明[3] - 基于MiniMax多模态自研能力积累 同步面向全球开发者提供API 适用于专业音乐创作 影视游戏配乐 虚拟偶像单曲和企业品牌专属音频内容多种场景[3] 本地生活AI应用发展 - 美团首个AI Agent产品"小美"开启公测 通过自然语言指令点咖啡 找餐厅 规划早餐菜单 大幅简化点餐流程[4] - 小美基于美团自研Longcat模型(5600亿总参数) 能根据用户口味偏好和地理位置实现从选品到支付的全自动操作 并记忆用户习惯[4] - 与Agent热潮相呼应 但目前仍有局限性:无法处理复杂模糊需求 无法进行语音回复 未来将在个性化和主动服务能力上进一步优化[4] 语音合成技术创新 - 小红书智创音频技术团队发布新一代对话合成模型FireRedTTS-2 解决现有方案灵活性差 发音错误多 说话人切换不稳定和韵律不自然等问题[5] - 模型在数百万小时语音数据上训练 支持逐句生成与多说话人音色切换 能够通过一句语音样本模仿音色和说话习惯 流式解码可实时输出音频[6] - 在主客观评测中均达行业领先水平 开箱即用支持中文 英语 日语等多语言 是AI播客等对话合成应用的工业级解决方案 已开源代码与模型权重[6] 开源语音合成技术突破 - 哔哩哔哩开源新一代零样本语音合成模型IndexTTS2 实现毫秒级精准时长控制 让AI配音能严丝合缝对上口型[7] - 模型采用"通用且兼容自回归架构的语音时长控制方法" 达到0.02%的时长误差率 同时通过两阶段训练策略实现情感和说话人身份的"解耦"[7] - 系统由T2S(文本到语义) S2M(语义到梅尔频谱)及BigVGANv2声码器三大核心模块组成 支持用大白话控制情绪 在跨语言产业应用上具有重大意义[7] 小型高效模型发展 - Meta AI发布MobileLLM-R1系列小参数高效模型 包括140M/360M/950M三种规模 专为数学 编程和科学问题优化[8] - 最大的950M模型仅使用约2T高质量token预训练(总训练量不足5T) 性能却与使用36T token训练的Qwen3 0.6B相当或更佳[8] - 在MATH基准上比Olmo 1.24B高五倍 比SmolLM2 1.7B高两倍 Token效率和性价比极高 完全开源模型中创造新标杆[8] AI数学研究突破 - 名为"Gauss"的AI Agent仅用三周时间完成了陶哲轩团队18个月未能完成的数学挑战——在Lean中形式化强素数定理(PNT)[9] - 该Agent由Math公司开发 生成约25000行Lean代码包含上千个定理和定义[9] - Gauss能协助顶级数学家进行形式验证 突破了复分析核心难题 团队计划在未来12个月让形式化代码总量提升100到1000倍[9] AI产业格局演变 - OpenAI推出GPT-5 首次真正让人感觉与博士级专家对话 内置"思考"能力 统一模型取代复杂选择界面 显著减少幻觉[10] - 发布前其他玩家也纷纷推出战略性新品:Anthropic推出Claude Opus 4.1瞄准高风险企业场景 Google推出Gemini 2.5 Deep Think和Genie 3分别强化推理和模拟能力[10] - 新AI版图已重新排布:OpenAI同时占据开放与封闭AI生态主导地位 Anthropic专注企业级精准稳定 Google专注基础研究长期布局 Agentic AI 先进推理和端侧能力已成顶尖模型核心特性[11] 科研AI战略布局 - DeepMind科学团队只瞄准三类问题:具有变革性 公认5-10年内无人能解 但DeepMind有信心快速攻克的"不可能任务"[12] - 团队从专用模型到通用智能的进化:将AlphaProof等专用数学模型的能力成功转移到Gemini通用模型 使DeepThink实现IMO金牌水平[12] - 未来目标是打造"科学API" 让全球科学家共享AI能力 从AlphaFold数据库到AI Co-scientist 降低科研门槛 使普通人也能做出诺贝尔奖级贡献[12]