Workflow
当导师让我去看多模态感知研究方向后......
自动驾驶之心·2025-09-07 23:34

自动驾驶多模态感知融合技术发展现状 - 激光雷达在自动驾驶感知中具有核心优势:提供超长感知距离的安全冗余、高帧率实时感知、恶劣环境抗干扰保障和三维空间认知能力 [1] - 多传感器融合是国内高端智能驾驶量产的主流范式 激光雷达与视觉感知结合构成可靠工作能力 [1] - 多模态感知融合技术正从传统融合向端到端融合和Transformer架构演进 [1] 多模态融合技术架构演进 - 传统融合分为三种方式:早期融合(输入端拼接原始数据 计算量巨大) 中期融合(传感器特征提取后融合 当前主流方案) 后融合(决策层结果融合 可解释性强但难以解决信息冲突) [2] - 基于Transformer的端到端融合成为最前沿方向:通过跨模态注意力机制学习不同模态深层关系 实现高效鲁棒的特征交互 [2] - 端到端训练减少中间模块误差累积 直接从原始传感器数据输出3D目标框 提升动态信息捕捉能力和整体性能 [2] 多模态融合科研培训课程体系 - 课程设计为期14周:包含12周在线小组科研 2周论文指导和10周论文维护期 [10][21] - 招生规模为6人/期 至多8人 采用"2+1"式师资配置(名校教授+行业导师+科研班主任) [5][11] - 硬件要求最低2张4090显卡 推荐4张4090或以上性能设备 支持云服务器租赁 [11] 课程技术内容体系 - 覆盖多模态融合全技术栈:从传统模块化感知系统到BEV视角融合 再到基于Transformer的端到端融合 [15] - 提供完整科研支持:包括公开数据集(nuScenes、KITTI、Waymo Open Dataset)、Baseline代码和论文idea [12][13][14] - 重点讲解激光-视觉深度融合和雷达-视觉-激光三元融合技术 涵盖多任务多传感器融合方案 [15][16] 学术产出与培养目标 - 学员将产出论文初稿 获得结业证书和推荐信(根据优秀程度) [11] - 培养体系解决三大问题:知识体系碎片化 动手能力不足 论文写作投稿困难 [5] - 课程包含完整论文方法论:从选题方法、实验方法到写作方法和投稿建议 [4][10]