Workflow
MemoryVLA:给机器人装上海马体,助力长时序机器人操作任务
具身智能之心·2025-09-03 00:03

当前VLA模型局限性 - 主流视觉-语言-动作模型忽略时序context导致长周期任务表现不佳[2] - 机器人操作任务本质具有非马尔可夫性需依赖时序信息[2] - 现有模型决策过度依赖当前观测缺乏长期记忆机制[7] MemoryVLA框架设计 - 受人类工作记忆与海马体系统启发构建认知-记忆-动作框架[3] - 预训练VLM将观测编码为感知token与认知token形成工作记忆[3] - 感知-认知记忆库存储低层级细节与高层级语义实现信息巩固[3] - 工作记忆从记忆库检索决策相关条目并与当前token自适应融合[3] - 记忆条件化扩散动作专家生成时序感知动作序列[3] 技术实现机制 - 记忆库通过合并冗余条目实现动态更新[3] - 框架同时保留逐字细节与语义要点形成多层次记忆[3] - 检索机制增强模型对长周期时序依赖任务的适应性[3] 应用价值 - 解决长周期机器人操作任务中的时序依赖问题[2][7] - 为具身智能系统构建类生物记忆的认知架构[3][7] - 推动视觉-语言-动作模型向更接近人类决策机制演进[3][7]