Workflow
没有数据闭环的端到端只是半成品!
自动驾驶之心·2025-08-31 23:33

行业趋势与需求 - 智能驾驶行业进入泛化深水区 端到端量产对自动标注要求显著提高[1] - 2024年以来智驾企业明显加大自动标注投入 人力物力资源集中[1] - 自动标注成为提升自动驾驶系统泛化能力与安全性的关键瓶颈[1] 技术难点与挑战 - 4D自动标注需实现3D空间+时间维度动态标注 面临五大核心难点[2] - 时空一致性要求极高 需确保跨帧标注连贯性 复杂场景下易出现标注断裂[2] - 多模态数据融合复杂 需同步解决激光雷达/相机/雷达的坐标对齐/语义统一/时延补偿问题[2] - 动态场景泛化难度大 交通参与者行为不确定性及环境干扰增加标注模型适应性挑战[2] - 标注效率与成本矛盾突出 高精度标注依赖人工校验 海量数据导致周期长/成本高[2] - 量产场景泛化要求高 不同城市/道路/天气/交通状况的数据挖掘与标注算法性能保障仍是行业痛点[2] 课程体系与内容架构 - 课程系统讲解自动驾驶4D自动标注全流程及核心算法 包含七大核心模块[3] - 基础模块涵盖4D自动标注应用场景/数据环境/交付物定义/系统时空同步/传感器标定技术[4] - 动态障碍物标注模块包含离线3D目标检测算法/CVPR 2024的SAFDNet实战/3D多目标跟踪算法/时序后处理DetZero实战[6] - 静态元素标注基于SLAM重建输出 通过全局clip道路信息实现自动化标注[9][11] - OCC标注模块解析通用障碍物算法输入输出 讲解基于Lidar/视觉的真值生成流程及工程优化方案[10] - 端到端真值生成模块涵盖一段式/两段式实现方案 整合动态障碍物/静态元素/可行驶区域/自车轨迹全流程[12] - 数据闭环专题分析行业scaling law有效性/主流公司数据驱动架构/跨传感器系统痛点及岗位面试要点[14] 技术实现与方法论 - 动态障碍物检测采用Image/Lidar数据增广技术 Backbone/检测头结合BEV/多帧时序融合方案[6] - 激光&视觉SLAM重建采用Graph-based算法 明确重建在4D标注中的核心用途[7] - 端到端标注配套闭环仿真DrivingGaussian算法 满足端到端自动驾驶刚需[12] - 数据质检体系作为结果验证关键环节 保障标注输出质量[6] 人才培养与能力建设 - 课程目标使学员掌握4D自动标注全流程 具备学术界与工业界前沿算法研发能力[19] - 课程覆盖动态障碍物检测跟踪/OCC标注/端到端标注等实战演练 提升解决实际问题能力[3][19] - 学员需具备深度学习/自动驾驶感知基础 熟悉Transformer模型及Python/PyTorch编程 自备12G以上显存GPU[23] - 课程采用线上录播模式 提供源码示例及社群答疑 有效期1年[19]