合成数据的「毒」与「药」,模型崩溃有何新解?
机器之心·2025-08-30 01:30
合成数据毒性研究新发现 - 合成数据在迭代训练中会导致逐代污染训练集 模型逐步丧失对真实数据分布的认识 输出同质化[2][5] - 早期崩溃阶段模型开始丢失分布尾部低概率事件的信息[5] - 晚期崩溃阶段模型收敛到与原始分布几乎无相似之处[6] - 崩溃发生与模型设计 学习过程及数据质量相关[7] - 崩溃现象发生于语言模型 变分自编码器VAE和高斯混合模型GMM等多种生成模型[8] - 斯坦福和哈佛研究认为模型崩溃风险被夸大 大多数崩溃实验基于非现实假设条件[8] - 现实应用中保持真实数据比例并采取正常训练流程可缓解崩溃问题[8] 合成数据在训练流程中的角色 - 业界建立系统化合成数据生成与应用框架 在风险与效用间寻求平衡[9] - 合成数据在预训练 微调 后训练 评估各阶段发挥功能[3] - 存在降低模型性能的情况需特别注意[3] 模型崩溃化解策略 - 提出Token-Level Editing 黄金比例混合和递归训练样本控制等方法解决崩溃问题[4] - 需量化合成数据带来的信息增益以保证模型泛化能力[4]