方法范式 - 传统强化学习(RL)和模仿学习结合Sim2Real技术,方法包括DQN/PPO/SAC/D4PG/GRPO等,主流仿真环境有Mujoco、Gazebo、Bullet、IssacSim/IssacGym [5] - Diffusion Policy和VLA模型与传统RL的根本区别在于用训练数据分布描述任务目标,而非依赖reward function,适合复杂任务如叠衣服、收拾桌面等 [4] - OpenVLA模型整合多模态输入,基于7B参数的Llama 2语言模型,结合DINOv2和SigLIP视觉编码器 [7] - RDT(Robotic Decision Transformer)采用Goal-Conditioned设计,在AGIBot百万真机数据集上训练 [9] - pi-0引入动作抽象层,将不同机器人关节空间映射到统一潜空间,缓解本体差异问题 [13] - 流匹配(Flow Matching)建模从标准正态分布到复杂目标数据分布的映射,用于生成机器人动作序列 [15][17][18] 技术实现 - 基础运动控制(如人形/四足机器人)以RL+sim2real为主,模型较小,算力消耗低,但全场景丝滑动作仍有差距 [22] - 复杂/长程操作任务采用预训练ViT编码器+LLM,使用diffusion/流匹配/transformer decoder输出动作,通过预训练+微调实现跨机器人泛化 [23] - 宇树官方demo基于IssacGym和PPO算法 [24] - 北京亦庄人形机器人中心开源强化学习运动控制,基于IssacLab融合人体运动数据与AMP奖励,实现天工Ultra机器人21公里奔跑 [24] - pi0预训练阶段利用10,000小时多机器人数据,微调阶段需1-5小时到上百小时任务数据,模型规格为33亿参数 [25] - Google Gemini Robotics采用云端VLA骨干(160毫秒延迟)和本地动作解码器的快慢架构 [25][26] 数据集 - Open X-Embodiment数据集包含1M+ trajectories、500+ skills、22种机器人类型,统一为RLDS格式 [21] - AGIBot数据集为智元机器人开源的百万真机数据集 [9][24] - EgoDex数据集包含829小时人类操作视频,338K轨迹/194任务 [24] 应用场景 - 基础运动控制依赖仿真器、机器人模型和domain randomization设计,reward shaping和sim2real技术 [35] - 复杂长程任务依赖VLA和Diffusion/FM,用训练数据分布描述任务目标,语言索引任务分布 [35] - 任务过程和目标定义方面,强化学习通过reward函数,VLA用数据分布描述,未来可能通过多模态输入预测任务目标 [35] - 底层控制任务适合RL+sim2real,上层复杂任务适合VLA+数据,如叠衣服、收拾桌面等需要理解人类意图的任务 [40]
从方法范式和应用场景上看强化与VLA/Flow Matching/机器人控制算法
具身智能之心·2025-08-19 01:54