端到端与轨迹预测研究价值 - 尽管端到端方案流行,但分层方案仍被广泛采用,轨迹预测作为核心算法仍是研究热点[1] - 行业持续关注联合轨迹预测和目标轨迹预测,相关学术会议和期刊保持高产出量[1] - 多智能体轨迹预测在自动驾驶、智能监控等领域具有关键应用价值,但面临行为不确定性和多模态性挑战[1] 扩散模型技术突破 - LeapfrogDiffusionModel(LED)采用可训练跳跃初始化器,实现19-30倍加速并在NBA/NFL等数据集提升精度[2] - MixedGaussianFlow(MGF)通过混合高斯先验匹配多峰分布,在UCY/ETH数据集达到SOTA性能[2] - MPMNet创新性使用运动模式记忆库引导扩散模型生成多样化轨迹[2] 课程技术体系 - 研究框架融合扩散生成机制、社会交互建模与条件控制机制[3] - 验证数据集覆盖ETH/UCY/SDD等主流基准,对比LED/MGF/SingularTrajectory等方法[3] - 预期产出包括算法框架、定量分析、可视化成果及高水平论文[3] 课程培养目标 - 构建轨迹预测知识体系,衔接理论知识与代码实践[6] - 提供论文创新思路到投稿的全流程支持,包含写作方法论与修稿指导[6] - 通过12周科研+2周论文指导+10周维护期实现论文初稿产出[9] 技术资源支持 - 提供ETH/UCY/SDD等预处理数据集及开源框架(LED/SingularTrajectory/MGF等)[20][21][22] - 重点论文覆盖CVPR 2023-2024最新成果,包括LED/MGF/MPMNet等创新模型[23] - 课程安排包含14周系统训练,涵盖扩散模型原理、社会交互建模到投稿全流程[24][25] 教学服务体系 - "2+1"师资配置(教授+行业导师+班主任)提供全周期学术支持[16][17] - 包含学前评估、个性化教学跟踪、学术复习等标准化流程[18] - 产出包含论文初稿、结业证书及推荐信(优秀学员)[19] 学员能力要求 - 需掌握Python/PyTorch及Linux开发基础,GPU配置要求16GB内存+4GB显存[10][12][15] - 学习强度要求每周1-2小时自学,按时完成作业并保持全勤[15] - 提供基础补齐课程(深度学习/PyTorch入门)支持零基础学员[14][26]
端到端盛行的当下,轨迹预测这个方向还有研究价值吗?
自动驾驶之心·2025-08-12 08:05