Workflow
理想VLA的实质 | 强化学习占主导的下一个action token预测
自动驾驶之心·2025-08-11 23:33

核心观点 - 对"predict the next token"的不同理解反映了对LLM或AI潜力与实质的不同认知 [1] - 越认为"predict the next token"超越统计学的人,越认可LLM潜力大/AI潜力大/推理过程是意识雏形/超级对齐重要 [2] - 理想VLA实质是在强化学习主导下连续预测"next action token",类比OpenAI的O1O3 [4] - 辅助驾驶比chatbot更适合采用强化学习方法 [4][24] Ilya观点分析 - Ilya作为前OpenAI首席科学家,推动了过去十年AI领域多项重大突破 [4][5] - Ilya认为"predict the next token"能超越人类表现,关键在于神经网络能推断出"理想人物"的行为 [8][9] - "predict the next token"本质是理解token产生的现实基础,而不仅是统计学 [11][12] - Ilya的思考方式非常严谨,认为预测token需要理解人类行为背后的思想、感情和想法 [12][13][17] 理想VLA技术特点 - VLA架构通过传感器输入,输出驾驶行为action token,整个过程实时发生在车端 [19] - VLA在NOA期间连续预测next action token,实质是理解现实物理世界 [20] - VLA在推理过程中具有意识特征,这种意识随NOA开启/关闭而出现/消失 [21] - 辅助驾驶比chatbot更适合强化学习,因其奖励函数更明确(安全/舒适/效率) [24][26] 行业技术差异 - AI软件与硬件开发存在本质差异:软件可快速AB测试迭代,硬件迭代较慢 [28] - AI软件内核是神经网络与权重,传统软件内核是代码 [28] - 理想在AI软件与硬件结合方面达到高水平,但行业认知不足 [29][30] - 自动驾驶技术社区活跃,涵盖大模型/VLA/端到端/感知/规划控制等多个方向 [33][35][37]