Workflow
自动驾驶中常提的VLM是个啥?与VLA有什么区别?
自动驾驶之心·2025-08-08 16:04

自动驾驶视觉语言模型(VLM)技术解析 核心观点 - VLM是融合视觉与语言处理能力的多模态AI系统,通过联合处理图像特征与文本信息实现场景深度理解与自然语言交互[6] - 在自动驾驶领域,VLM可识别交通标志文字、生成安全提示、支持语义问答,显著提升车辆环境感知与交互能力[12] - 与VLA相比,VLM侧重"视觉理解+语言表达",而VLA扩展至"感知-决策-执行"闭环,两者在架构与任务目标上存在本质差异[18] 技术实现路径 模型架构 - 采用视觉编码器(CNN/ViT)提取道路纹理、车辆轮廓等特征,语言模块(Transformer)处理语义关联,通过跨模态注意力机制实现图文对齐[8][9] - 训练分两阶段:预训练阶段使用互联网图文数据建立通用能力,微调阶段采用自动驾驶专属数据集(覆盖不同道路/天气/交通场景)[11] 应用功能 - 实时场景提示:识别施工标志/水坑等危险区域,生成"减速绕行"等自然语言提示并通过车载系统播报[12] - 交互式语义问答:结合图像与地图数据回答"最优车道选择""转向限制"等乘客语音询问[12] - 路牌文字识别:结构化输出"限高3.5米""禁止掉头"等交通标志信息至决策模块[12] 部署优化 - 采用边缘-云协同架构:云端完成模型训练/微调,车载单元部署轻量化推理模型(经剪枝/量化优化)实现毫秒级响应[14] - 数据标注需覆盖多光照/天气条件,标注内容包含物体框选与自然语言描述(如"左侧车道封闭需减速至60km/h")[14] 技术演进方向 - 融合雷达/LiDAR/V2X等多源数据提升环境感知全面性,整合实时交通法规/气象信息更新决策背景知识[16] - 通过模型集成/贝叶斯深度学习评估不确定性,低置信度时切换至传统传感器融合方案保障安全性[15] - 结合大语言模型(LLM)与大视觉模型(LVM)发展,推动多模态融合感知与交互能力升级[16]