量化模型与构建方式 1 模型名称:扩散指数行业轮动模型[3][23][24];模型构建思路:基于价格动量原理,通过计算行业扩散指数来捕捉行业趋势,选择扩散指数排名靠前的行业进行配置[24][36];模型具体构建过程:首先,计算每个中信一级行业的扩散指数,该指数反映了行业内个股价格走势的强弱程度;然后,每周或每月跟踪各行业扩散指数的数值及其变化,并选择扩散指数排名前六的行业作为当期配置建议[25][28];模型评价:该模型在趋势性行情中表现较好,能有效捕捉行业动量,但在市场风格切换至反转行情时可能面临失效风险[24][36] 2 模型名称:GRU因子行业轮动模型[3][6][31];模型构建思路:基于分钟频量价数据,利用GRU(门控循环单元)深度学习网络生成行业因子,以把握短期交易信息并进行行业轮动[31][37];模型具体构建过程:首先,收集各行业的分钟频量价数据;然后,将这些数据输入到GRU深度学习网络中进行训练,以生成GRU行业因子;最后,根据GRU行业因子的数值进行排序,选择因子排名靠前的行业进行配置[6][32][34];模型评价:该模型对短周期行情有较好的自适应能力,但在长周期表现一般,且可能因极端行情而失效[31][37] 模型的回测效果 1 扩散指数行业轮动模型,2025年以来超额收益3.68%[3][23][28] 2 GRU因子行业轮动模型,2025年以来超额收益-7.53%[3][31][34] 量化因子与构建方式 1 因子名称:行业扩散指数[3][5][25];因子的构建思路:通过量化行业内个股价格走势的强弱来构建一个综合指标,用以衡量行业的整体趋势强度[24][36];因子具体构建过程:对于每个中信一级行业,计算其成分股中价格处于上涨趋势的股票比例或使用其他类似方法合成一个0到1之间的指数,数值越高代表行业趋势越强[25][26] 2 因子名称:GRU行业因子[3][6][32];因子的构建思路:利用GRU深度学习模型处理高频量价数据,提取能够预测行业短期表现的因子[31][37];因子具体构建过程:使用各行业的分钟频量价数据作为输入特征,通过训练好的GRU网络模型输出一个因子得分,该得分反映了模型对该行业未来表现的预测[32][37] 因子的回测效果 1 行业扩散指数因子,截至2025年9月26日,在通信行业的取值为0.949,在有色金属行业的取值为0.927,在银行业的取值为0.897,在电子行业的取值为0.864,在汽车行业的取值为0.859,在综合行业的取值为0.811[5][25] 2 GRU行业因子,截至2025年9月26日,在钢铁行业的取值为3.15,在房地产行业的取值为2.6,在建材行业的取值为2.08,在石油石化行业的取值为1.85,在交通运输行业的取值为0.81,在电力及公用事业的取值为0.01[6][32]
行业轮动周报:融资资金持续净流入电子,主板趋势上行前需耐住寂寞-20250928
中邮证券·2025-09-28 08:59