Workflow
中邮因子周报:动量表现强势,小盘成长占优-20250811
中邮证券·2025-08-11 10:10

量化模型与构建方式 1 模型名称:GRU模型 模型构建思路:基于门控循环单元(GRU)神经网络构建的时序预测模型,结合基本面和量价特征进行股票收益预测[10][30] 模型具体构建过程: - 输入层:包含close1d(日收盘价)、open1d(日开盘价)、barra1d(Barra风格因子日频数据)等特征[31] - 隐藏层:GRU神经网络结构,捕捉时序依赖关系 - 输出层:预测股票未来收益 - 训练方式:使用历史滚动窗口数据训练,优化损失函数 2 模型名称:多因子组合模型 模型构建思路:通过线性加权方式整合多个有效因子构建综合评分模型[31] 模型具体构建过程: - 因子筛选:选取基本面因子(如ROE增长、净利润超预期增长)和技术因子(如60日动量、120日波动)[19][24][29] - 因子标准化:进行行业中性化处理和标准化处理[17] - 权重分配:等权或基于IC-IR动态加权 - 组合构建:每月末按综合评分选股[17] 量化因子与构建方式 1 因子名称:Barra风格因子体系 因子构建思路:基于MSCI Barra多因子模型框架构建的系统化风险因子[15] 因子具体构建过程: - Beta因子:计算股票历史beta值 - 市值因子:ln(总市值)\ln(总市值) - 动量因子:历史超额收益率序列均值 - 波动因子:0.74×σ超额收益+0.16×累积超额收益离差+0.1×σ残差收益0.74 \times \sigma_{超额收益} + 0.16 \times 累积超额收益离差 + 0.1 \times \sigma_{残差收益} - 流动性因子:0.35×月换手+0.35×季换手+0.3×年换手0.35 \times 月换手 + 0.35 \times 季换手 + 0.3 \times 年换手 - 盈利因子:0.68×预测盈利价格比+0.21×市现率倒数+0.11×市盈率ttm倒数0.68 \times 预测盈利价格比 + 0.21 \times 市现率倒数 + 0.11 \times 市盈率ttm倒数 - 成长因子:0.18×预测长期盈利增长+0.11×预测短期增长+0.24×盈利增长+0.47×营收增长0.18 \times 预测长期盈利增长 + 0.11 \times 预测短期增长 + 0.24 \times 盈利增长 + 0.47 \times 营收增长[15] 2 因子名称:超预期增长因子 因子构建思路:捕捉财务指标超出市场预期的增长信号[19] 因子具体构建过程: - 计算ROA/ROC/净利润等指标的同比变化 - 与分析师一致预期比较计算超预期幅度 - 标准化处理并行业中性化[17] 3 因子名称:技术动量因子 因子构建思路:捕捉股票价格趋势特征[19][24][29] 因子具体构建过程: - 20日动量:过去20日收益率 - 60日动量:过去60日收益率 - 120日动量:过去120日收益率 - 波动率:20日/60日/120日收益率标准差 模型的回测效果 1 GRU模型: - barra1d模型:近一周超额0.38%,今年以来超额3.78%[31] - barra5d模型:今年以来超额8.37%[31] - close1d模型:近六月超额6.80%[31] 2 多因子组合模型: - 近一月超额-0.30%,今年以来超额2.54%[31] 因子的回测效果 1 Barra风格因子: - 动量因子:全市场近一周多空收益1.01%(120日动量)[19] - 波动因子:全市场近一周多空收益1.45%(60日波动)[19] - 流动性因子:本周多头表现强势[16] 2 超预期增长因子: - 净利润超预期增长:全市场近一周多空收益0.74%[19] - ROA超预期增长:全市场近一周多空收益0.49%[19] 3 技术动量因子: - 60日动量:中证500近一周多空收益1.75%[24] - 120日波动:中证1000近一周多空收益1.68%[29]