文章核心观点 - 大模型的出现改变了云计算的竞争格局,打破了以往由规模效应驱动的“强者恒强”趋势,为后进者提供了冲击前排的机会 [1] - AI云的核心竞争力已从传统的“卖云”资源,转变为“模型+云平台+芯片”的垂直整合全栈能力,企业购买的最终商品是AI而非云本身 [20][21] - 行业竞争仍处在“半程路标”阶段,胜负未定,但方向已清晰指向全栈能力的构建,不同厂商正基于各自优势采取差异化路径 [22] AI云对行业竞争格局的重塑 - 大模型之前的叙事逻辑是规模效应驱动行业集中度提升,强者愈强 [1] - 大模型让云厂商的生意发生本质变化,为后进者提供了冲击机会 [1] - 对于如何做AI云,即便是顶级云厂商也未很快达成共识 [1] - 在AI云语境下,企业购买的最终商品是AI,云退居为支撑AI的基础设施,未来会逐渐消失在客户账单上 [20] - AI的竞争已从单点竞争转向涵盖基础设施、模型、工程、应用四个层级的系统能力竞争,任何只占据其中一层的厂商都很难长期掌握产业主导权 [19] 主要云厂商的AI云战略与表现 微软 - 早期凭借对OpenAI的投资拥有GPT优先使用权,希望通过GPT带飞Azure [3] - 与OpenAI的合作从最初的美好变为“貌合神离”,因OpenAI寻求多方云资源替代方案并推出竞争产品 [3] - 微软不得不投资Anthropic并加大自研模型力度以应对 [3] 亚马逊云科技 (AWS) - 选择大手笔投资OpenAI的竞争对手Anthropic(先于微软)以获得领先模型能力 [3] - 核心策略是“Choice Matters”,在Bedrock上提供多种模型选择,认为不存在适用于所有场景的通用最优模型 [3] - 面临的关键问题是头部模型具有无可替代的重要性,而顶级模型多由竞争对手掌控或企业不愿完全托管,影响了其模型层竞争力 [4] - 在最近的re:invent大会上新增了十多款模型,包括中国的Kimi和Minimax,并更新了自研的Nova模型,以在模型层面不落后太多 [4] - 与微软类似,缺少自研模型,正处于关键的自我修正期,需在保持平台中立的同时补齐模型层的确定性 [22] 阿里云 - 凭借Qwen模型在全球技术圈闯出影响力,是全球唯一一家积极研发先进AI模型并且全方位开源的云计算厂商 [5] - 业界率先实现“全尺寸、全模态”的全面开源,其他三家头部云厂商均未将自身模型规模开源 [5] - 通义千问Qwen衍生模型数量已突破18万,远超Meta的Llama系列;全球下载量超7亿,据彭博统计截至2025年10月已超越Llama,成为全球第一AI开源模型 [5] - 阿里云的目标是让Qwen成为产业的默认依赖,通过开源成为标准 [5] - 在Gartner报告中,是唯一入围GenAI云基础设施新兴领导者象限的亚太厂商 [10] - 在“GenAI模型”维度,其“特征”指标领先于AWS和微软,仅次于谷歌和OpenAI [13] - 在“GenAI工程”维度,其“特征”及“未来潜力”指标优于AWS、谷歌和微软 [16] - 与谷歌云一同,因在模型、云平台与芯片多个层级形成正向叠加效应而更受资本市场认可 [21] - 其自研AI芯片PPU虽未公开发布,但公司体量支撑得起相关支出,并具备自用和对外输出的想象空间 [22] 谷歌云 - 是低开高走的典型代表,Gemini 3系列模型和第七代TPU Ironwood被视为谷歌AI逆袭的标志 [6] - 公司创始人坦诚,尽管八年前发布了Transformer论文,但内部未给予足够战略重视,在算力扩展上投入过于保守 [6] - 第七代TPU Ironwood在性能、能效比和互联带宽上均显示出对GPU的显著优势 [6] - Gemini 3系列的原生多模态能力和超长上下文窗口将行业标准提升到新量级 [6] - 其“模型+云+芯片”的垂直整合,展现了更深厚的护城河,为行业提供了AI云的参考标准 [6] - 与阿里云一同,因在模型、云平台与芯片多个层级形成正向叠加效应而更受资本市场认可 [21] - TPU已经证明其在性能和成本上的优势 [22] Gartner生成式AI技术栈象限分析 - Gartner发布了涵盖GenAI云基础设施、GenAI工程、GenAI模型以及AI知识管理应用四大维度的新兴市场象限报告,可视为AI技术栈的参考指南 [7] - GenAI云基础设施:新兴领导者象限仅有微软、谷歌、AWS和阿里云四家厂商入围,阿里云是唯一入围的亚太厂商 [10] - GenAI模型:市场高度集中,主要由少数几家厂商主导,四家云厂商依旧位居领导者象限 [13] - GenAI工程:收录厂商数量更多,四家云厂商继续领跑,但与其他厂商的差距并未拉开 [16] - AI知识管理应用/通用生产力:评测范围覆盖企业级AI搜索、对话式AI平台及生产力工具,除四家云厂商外,Salesforce等软件厂商也位列其中 [19] AI云的核心竞争力与未来趋势 - AI云的核心竞争力在于模型、云平台与芯片的垂直整合 [21] - 模型决定智能上限,云平台把模型变成可规模化的商品,芯片决定成本下限和性能天花板 [21] - 当AI成为算力、数据、软件栈高度耦合的系统工程,全栈能力使得模型迭代能直接反馈到底层基础设施,也让基础设施投入更快转化为产品优势 [21] - 海外新兴云厂商如CoreWeave和Nebius试图从提供最新GPU裸机服务或AI推理服务等单点优势切入,但很难冲击原有的四强格局 [20] - 云厂商过去二十年的变化是不断在技术栈上叠加新能力,这本身就是护城河 [21]
AI云的“半程路标”:谷歌云和阿里云的逆袭,AWS、微软云的再审视