谷歌DeepMind对AGI发展路径的预测 - 谷歌DeepMind CEO Hassabis预测,具备或超越人类能力的通用人工智能(AGI)可能在2030年之前实现,距离实现AGI仅剩5到10年时间 [1][11] - 实现AGI需要1-2个类似Transformer或AlphaGo级别的重大技术突破 [1][4] - 通往AGI的道路存在风险,包括恶意使用AI可能导致的灾难性后果,甚至存在非零的灭绝级风险 [13] 当前AI系统的能力与局限 - 谷歌DeepMind对AGI的定义要求很高,需全面具备人类所有认知能力,包括创造力和发明能力 [16] - 当前大语言模型能力参差不齐,在某些领域达到博士水平甚至能获奥林匹克金牌,但在持续学习、在线学习、长期规划和多步推理等关键能力上存在明显缺陷 [16][18] - 谷歌Gemini模型已展现出超出预期的“抽象理解”和“元认知”能力,例如能理解电影场景的象征意义,但开发人员对其潜力的探索可能不足10% [14][15] 谷歌下一代AI架构Titans的技术突破 - 谷歌在NeurIPS 2025大会上发布了全新AI架构Titans,被视为Transformer的“最强继任者” [6][21] - Titans架构完美融合了RNN的极速响应和Transformer的强大性能,旨在解决Transformer在处理超长上下文时计算成本飙升的瓶颈 [7][24] - Titans引入了一种全新的神经长期记忆模块(一个深层多层感知机MLP),能够主动学习并即时更新参数,实现“测试时”记忆,在高达200万token的上下文中保持高召回率和准确率 [8][26][29][43] 统一理论框架MIRAS及新模型 - 谷歌同时提出了MIRAS理论框架,为序列建模提供了统一视角,将各种架构视为解决“融合新信息与保留旧记忆”核心问题的不同手段 [33][34] - MIRAS通过四个关键设计维度定义序列模型:记忆架构、注意偏置、保留门和记忆算法 [36][37] - 基于MIRAS框架,谷歌构建了YAAD、MONETA、MEMORA三款独特的无注意力模型,这些模型在语言建模和常识推理任务中表现出色,验证了探索非均方误差优化机制的优势 [40][41][42] Titans架构的性能表现 - 在多项基准测试中,Titans架构在同等参数规模下,性能优于最先进的线性循环模型(如Mamba-2和Gated DeltaNet)以及Transformer++基线模型 [40][41] - 在BABILong超长上下文推理基准测试中,Titans以更少的参数量,表现优于包括GPT-4在内的所有基线模型,并展示了可有效扩展到超过200万token上下文窗口的能力 [43] - 这些新架构保持了高效的并行化训练和快速的线性推理速度 [42] 未来AI发展趋势 - Hassabis指出,未来12个月的关键趋势包括:继续扩展现有AI系统规模,这至少会成为最终AGI的“关键构件” [3][18] - 多模态融合将彻底打通,实现类人的视觉智能、语言与视频的深度融合,世界模型成为主流,智能体达到可靠应用水平 [9] - 行业认为,Titans可能是谷歌自Transformer以来的首个重大突破,并预测采用该架构的Gemini 4可能即将推出 [45][47]
谷歌祭出Transformer杀手,8年首次大突破,掌门人划出AGI死线