算力悖论:理论对了所需算力是可控的,理论错了再多算力也白搭
36氪·2025-12-01 00:25

文章核心观点 - 当前人工智能行业依赖堆算力、拼规模的Scaling发展模式已走到尽头,方向存在根本性错误 [1][3] - 行业竞争将回归“真正的研究”,理论突破比算力预算更重要,范式转变即将发生 [1][5][10] - 谷歌在大模型领域的进展印证了新理论,预示“软硬一体”公司竞争模型将成为人工智能公司的必由之路 [2] Scaling时代的终结 - Scaling战略的确定性吸引海量投资,但高质量训练数据已快见底,收益递减拐点已来临 [3] - 现有路径能再走一段但后劲不足,不会成为真正的智能,需要另一种方法 [3] - 理论正确时所需算力可控,理论错误时再多算力也无效,形成算力悖论 [5] 模型泛化能力的根本缺陷 - 当前模型在基准测试风光但真实场景频繁失败,暴露出泛化能力远逊人类的根本问题 [6] - 模型像偏执的专才,在狭窄领域过度优化却丧失广泛能力,与人类快速学习、广泛适应的智能模式不同 [7][8] - 理解可靠泛化机制是核心未解之谜,修复底层机制可解决许多表面问题包括AI对齐 [8] 研究优先的新算法与公司策略 - 前沿实验室开支被推理基础设施、产品工程等多方分散,真正留给研究的预算差距缩小 [9] - 历史范式突破如AlexNet、Transformer均不需要最大算力规模而依靠洞察力 [10] - SSI公司结构体现纯粹研究理念:无产品、无推理负载,30亿美元融资专注验证泛化理论 [10] 对AGI概念的重新思考与未来预测 - AGI概念被高估,人类本身也不是AGI,智能是通过经验学习具体技能而非一次性前置灌输 [12] - 具备类人泛化能力的学习系统将在5到20年内出现,行业行为将改变,安全合作与政府介入将加深 [13] - 对齐目标倾向关心所有感知生命,这比只关心人类更自然,基于大脑共情神经机制的效率原则 [13] 研究品味与行业范式回归 - 有希望的研究方向通常优美、简洁且从生物智能获得灵感,丑陋方法通常预示问题 [14] - 研究依赖对“某些路径必然有效”的强烈信念,这种信仰是任何规模算力都无法替代的 [14][15] - Scaling为研究信仰提供的替代品已消失,行业将回归由想法驱动、充满不确定性的研究本身 [15]