谷歌训出Gemini 3的TPU,已成老黄心腹大患,Meta已倒戈
36氪·2025-11-25 11:44

文章核心观点 - 谷歌启动名为TPU@Premises的激进计划,允许客户将TPU芯片直接部署在自有数据中心,旨在打破英伟达对高端AI芯片市场的垄断 [1] - 该计划首个目标客户为Meta,谈判涉及金额达数十亿美元,预计在2027年实施 [2][3] - 谷歌最新旗舰芯片Ironwood TPU v7在关键性能参数上已追平英伟达旗舰B200,并通过拥抱PyTorch生态来降低客户迁移门槛 [6][11][13] - 公司目标是从英伟达口中夺取10%的市场份额,英伟达已通过投资AI初创公司等方式进行反击 [13][14] 战略转变与市场影响 - 谷歌从仅提供云端TPU算力服务(“云房东”角色)转变为直接向客户销售算力硬件(“军火商”角色)[1] - 允许客户进行私有化部署,对拥有海量敏感数据和极高合规要求的巨头(如Meta)更具吸引力 [5] - 这一战略旨在直接挑战英伟达在高端AI训练芯片市场的绝对主导地位 [1] 关键客户与潜在交易 - Meta正与谷歌进行谈判,考虑斥资数十亿美元在2027年将谷歌TPU芯片引入其自有数据中心 [3] - 谈判内容不仅涉及租用,更侧重于“私有化部署”,以满足数据安全和合规要求 [5] - 谷歌最新大模型Gemini 3完全在TPU集群上训练成功,其技术表现抹平了与OpenAI的差距,这动摇了“只有英伟达GPU才能胜任前沿模型训练”的行业偏见,是吸引Meta等客户的关键因素 [5] 硬件性能对比 - 谷歌Ironwood TPU v7与英伟达B200在核心指标上高度接近 [6][7] - FP8算力:TPU v7约为4.6 PFLOPS,B200为4.5 PFLOPS,两者基本持平 [7] - 显存容量:两者均配备192 GB的HBM3e内存,完全一致 [7] - 显存带宽:TPU v7约为7.4 TB/s,B200为8.0 TB/s,英伟达略高约8% [7] - 互联架构:谷歌的ICI技术使单Pod内数千颗芯片能以9.6 Tb/s带宽高效互联,提供了卓越的大规模集群扩展性 [8] - 硬件性能的追平使TPU成为英伟达GPU的真正“平替”甚至更优选择 [10] 软件生态策略 - 英伟达最深的护城河是其CUDA软件生态 [11] - 谷歌采取精明策略,并未强推自有JAX语言,而是选择拥抱由Meta发明的、应用广泛的PyTorch框架 [13] - 通过开发“TPU Command Center”软件,使开发者能像使用GPU一样顺滑地通过PyTorch调用TPU,显著降低了客户的迁移门槛 [13] 竞争态势与行业反应 - 英伟达已感受到竞争压力,近期通过对OpenAI、Anthropic等AI明星初创公司进行巨额投资,以换取其对英伟达GPU的长期使用承诺 [14] - 谷歌也开始模仿英伟达的财务绑定策略,例如与云服务商Fluidstack达成协议,承诺提供高达32亿美元的“兜底”支持 [14] - 英伟达CEO黄仁勋近期公开表示对谷歌七代TPU研发成果的“尊重”,反映出其对竞争加剧的警惕 [14]