文章核心观点 - AI正从技术工具全面渗透为业务核心驱动力,呈现出架构师、协调者、哨兵三大主题 [1] - 2026年十大战略技术趋势重点聚焦于八大新兴方向,涵盖AI原生开发、多智能体系统、物理AI等关键领域 [1] AI原生开发平台 - AI原生开发平台是下一代软件工程核心,通过自然语言提示词直接生成完整应用或辅助编写代码,实现“氛围编程” [2] - 市场上已出现一键生成前后端网站的工具及集成AI的IDE开发环境,部分技术公司20%–40%的代码由AI生成 [2] - AI正在重构软件开发本质,其价值更多体现在模块化、标准化任务的自动化上,难以独立完成复杂系统重写 [2] AI超级计算平台 - AI超算平台作为未来算力底座,呈现混合AI算力与算力调度两大特征,以应对模型规模与数据量激增带来的指数级算力需求 [3] - 云端与终端芯片协同工作,NVQLink和CUDA-Q等技术实现量子计算与经典超算的联动,形成跨架构任务调度能力 [3] - 中国企业推出“超节点”技术,通过堆叠AI芯片实现算力聚合,是地缘政治背景下的务实选择 [7] 多智能体系统 - 多智能体系统通过“分而治之”将复杂任务拆解,由不同智能体分工协作再整合结果,解决单智能体可靠性低、成功率随步骤骤减的问题 [8] - 案例包括贝塔斯曼的跨业务内容检索和GitHub上用于股票分析的开源多智能体项目 [8] - 多智能体是AI从“工具”走向“协作者”的关键一步,未来企业AI架构或将出现“智能体中台” [9] 特定领域语言模型 - 企业级AI项目失败率高达95%,核心问题在于通用大模型“不懂业务” [10] - 特定领域语言模型通过行业数据再训练成为解决之道,使AI从“通才”走向“专才” [10] - 企业需投入数据治理与领域训练,否则将陷入“有模型无智能”的局面 [10] 物理AI - 物理AI指能与现实世界交互的AI系统,主要应用于自动驾驶与机器人,技术路径包括VLA模型和“世界模型” [11] - 特斯拉、蔚来等车企正积极布局能理解物理规律、进行预测与规划的“世界模型” [11] - 物理AI是AI与实体经济融合的桥梁,将在制造业、物流、医疗等领域逐步替代重复性劳动 [11] 前置式主动网络安全 - AI驱动的攻击如“氛围黑客攻击”可自动化完成漏洞探测、钓鱼攻击甚至勒索软件生成,降低了黑客门槛 [12] - 前置式主动网络安全系统应运而生,包括预测性威胁情报、自动移动目标防御等技术 [12] - 企业需建立“预测-响应-欺骗”三位一体的主动安全体系,而非依赖静态防御 [14] 数字溯源 - 数字溯源通过建立软件SBOM、模型MLBOM等清单体系,追踪组件来源与安全性,以应对软件供应链攻击 [15] - AI生成内容的水印与标识技术正在逐步标准化 [15] - 中国在AI内容标识方面的法规实践值得行业关注 [16] 地缘回迁 - 地缘政治风险促使企业将数据与应用从全球公有云迁移至本土“主权云”,欧洲企业受影响最深 [17] - 中国早在信创与国产化替代中布局,DeepSeek为适配国产芯片支持特定数据格式,标志中国AI生态逐步闭环 [17] - 中国企业需在自主可控与全球协作之间找到平衡点,避免陷入“技术孤岛” [17] 延续性趋势与重点方向 - “机密计算”通过可信执行环境保护使用中数据,“AI安全平台”防范提示词注入、模型越狱等新型攻击,共同构成AI时代“安全双翼” [18] - 物理AI、AI原生开发平台、特定领域语言模型、多智能体系统是最值得中国企业在未来一年关注的四大重点趋势 [18] - 企业应避免盲目追逐技术热点,聚焦于将AI嵌入业务流程、具备护城河及形成生态协同,在制造业场景中可结合“组合式AI”实现投入与效果平衡 [18]
Gartner 2026战略技术趋势:AI原生、多智能体与物理AI引领产业变革
搜狐财经·2025-11-11 03:39